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Abstract—To reduce the environmental impact of civil aviation,
future aircraft configurations will be equipped with Very High
Aspect Ratio Wings. Such wings enable to reduce the drag but
its structural sizing is a challenge to minimize the wing weight
due to high structural constraints. A technique consists in using
adaptive wings that modify their shape according to the gust
measured ahead of the airplane using wind lidar. To determine
the 3D wind field, the lidar is addressed along different axes to
obtain the projections of the wind along each of them. In this
paper, we present a methodology for optimizing lidar axis angles
to best estimate the 3D wind field.

Index Terms—min-max optimization, robust optimization,
wind lidar, gust load alleviation, 3D wind field, turbulence.

I. INTRODUCTION

Nowadays, Very High Aspect Ratio Wing is a promising
technology enabling to reduce airplane drag and thus the
aircraft environmental impact. However, for these geometries,
the structural sizing is subject to many loads including the
ones caused by turbulence. Thus, characterization of gust
using wind lidar is important to perform gust load alleviation
(GLA). The latter consist in actively reducing the loads caused
by gust on aircraft’s wings using actuators that modify the
aerodynamic profile of the aircraft according to the direction
and strength of the wind encountered. The use of a lidar
to detect the wind structure in advance (so called feed-
forward GLA) give enough time to the actuators to adapt
the wings. This requires to measure the variation of the 3-
dimensional (3D) wind velocity along the plane path ahead
of the airplane. The wind measurement is typically performed
with a direct detection molecular lidar [1] located at the front
of the airplane. However, the instrument only measures the
projection of the wind along its axis. To determine the 3D
wind field, the lidar axis is typically addressed along multiple
angles to measure the wind vector along different lidar axes
direction.
A method, based on wind lidar measurements, for estimating
and detecting a gust has been developed [2]. By accumulating
the measurements over time, a nonlinear filter is used to
estimate the gust where lidar axes are evenly distributed on
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a cone of arbitrary angle.
In a more general framework, we propose to optimize the lidar
configuration with respect to the axes angles. An optimization
method to minimize the gust estimation error is developed
when the gust is immersed in Von-Karman-type turbulence [3].
The optimization criterion is based on the Cramér-Rao lower
bound which depends on the unknown gust. To overcome this
problem, we propose a min-max approach where the goal is
to minimize the estimation error when the gusts belong to a
set of critical gusts to which the aircraft is sensitive. To our
knowledge, no previous studies have addressed this issue.
We begin by describing the parametric modeling of the gust
and lidar measurements in section II. In section III, a min-
max optimization method by generating a sample of critical
gusts is developed. Section IV is devoted to simulation results
demonstrating the robustness of the proposed optimization
method.

II. PROBLEM MODELING

In this section, we describe parametric models of gust
and lidar wind measurements. The gust is modeled in 3-
dimensional space, characterized by a 6-dimensional vector.

The unit vector e gives the direction of the wind in the
gust, while the gust propagation direction is given by the unit
vector u orthogonal to e: u(α, β) ⊥ e(α, β, γ) (Fig. 1, 2).

Fig. 1: Gust illustration.
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Fig. 2: Gust propagation direction.

These vectors are expressed as follows:
u = (sinα sinβ, sinα cosβ, cosα)

T

e = (cosα sinβ sin γ + cosβ cos γ, cosα cosβ sin γ

− sinβ cos γ,− sinα sin γ)T .
(1)

We assume that the gust has a typical ’1− cos’ shape [4].
The velocity vector field at point r is the following:

Vg(r) =


V0

2

(
1 + cos

(
2π

Lg
s

))
e if − Lg

2
≤ s ≤ Lg

2

0 otherwise,
(2)

where s = u · (r− xg i). The location of the maximum wind
amplitude on the airplane axis is denoted by xg . Lg is the gust
length. The 3D gust model is thus determined by the following
6-dimensional state vector we aim to estimate with the lidar
measurements:

X = (V0, Lg, xg, α, β, γ)
T
. (3)

A. lidar measurements

The wind Doppler lidar is a useful equipment for measuring
the wind at a given range. It consists in a laser emission sent
to the atmosphere thanks to a telescope, and a scanner if
lidar beam steering is needed. The molecules and aerosols
of the atmosphere scatter the laser emission back to the
receiver. During the scattering process, the Doppler effect
shifts the laser frequency by −2vr/c, where vr is the radial
component of the wind on the lidar axis (positive if the wind is
moving away from the lidar, negative otherwise). The Doppler
frequency shift is then analyzed with an optical interferometer
and its dedicated signal processing. We consider N lidar axes
at the front of the aircraft. Doppler measurements on each
axis are perturbed by Von a Karman-type turbulence [3] whose
spatial correlation properties are assumed to be known.

The distances from the lidar to the measurement points are
denoted by dj for j = 1, · · · ,K. The Doppler measurements
yi(dj) are the projection of the wind field on the lidar axes ai

Fig. 3: Lidar axes and Doppler measurements.

(Fig. 3). According to (2), measurements on the axis ai are
expressed as follows:

yi(dj) = Fij(u, Lg, xg) V · ai + εi(dj)
def
= hij(X) + εi(dj),

(4)
where, 

Fij = 1 + cos

(
2π

Lg
u · (dj ai − xg i)

)
V =

V0

2
e,

(5)

for i = 1, · · · , N and j = 1, · · · ,K. The lidar measurements
are affected by a noise εi(dj) due to the turbulence which is
assumed to be isotropic an homogeneous. The intensity of the
turbulence is denoted by σT . The noises εi(dj) are assumed
to be Gaussian with mean 0 and variance σ2

T . The correlation
between εi(dj) at the point rij and εk(dl) at point rkl depends
on the relative position of these points (Fig. 3) in accordance
with the Von Karman model [3]. The following vector y of
dimension NK×1 stacks the measurements made on all lidar
axes:

y = F(Lg, xg,u)aT V + ε
def
= h(X) + ε, (6)

where the components of the matrix F are Fij for i =
1, · · · , N and j = 1, · · · ,K and where the matrix a, of
dimension N × 3, is composed of the N lidar axes.
Measurements y are affected by turbulence modeled as zero
mean Gaussian noise ε with covariance matrix the Von Kar-
man’s correlation matrix Σ. This matrix is proportional to σ2

T ,
where σT is the turbulence intensity, and depends on L0, the
large turbulence scale. In the following, we assume that L0

and σT are known. The Von Karman’s correlation matrix of
dimension (NK ×NK) is described in [3].

B. Measurement model

Measurements are accumulated over time, as the airplane
moves forward. Since the speed of the airplane is high com-
pared with that of the gust, we assume that the gust shape
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is constant during the sampling period (< 0.5 s). We then
consider the following measurement gust model at time k,

yk = hk(X) + εk, (7)

where εk and hk are defined in (6). The gust state vector X (3)
is considered to be constant. We assume that the turbulence
noises are time to time decorrelated. The measurement model
hk(X) depends on time k because it takes into account the
aircraft’s displacement of the airplane along its axis between
times k − 1 and k. This displacement is supposed to be
known exactly. A nonlinear filtering is presented in [2] which
estimates the gust state vector X at each time k. Our aim is
to optimize the lidar axes configuration in order to minimize
the estimation error of X at the last moment n.

III. OPTIMIZATION OF LIDAR AXES CONFIGURATION

A. Sequential Cramér-Rao Lower Bound

We consider N lidar axes ai defined by the following angles
(Fig. 3):

Θ = {θi, ϕi}1≤i≤N . (8)

We seek to minimize the gust error estimation at the last
moment (n) of measurement, i.e we want to find the best lidar
axes angles that achieve this minimization. For this purpose,
we use the Cramér-Rao Lower Bound [5]. The Cramér Lower
Bound (CRLB) gives the minimal covariance matrix of any
unbiased estimator X̂ .

V(X̂) � CRLB(X) = J(X)−1 (9)

in the sense that V(X̂)−CRLB(X) is semi-definite positive.
The square roots of the diagonal of CRLB represent the
minimal std dev of any unbiased estimator of X (3). J(X)
is the information matrix. Based on the measurement model
(6), Jn at the last measurement’s time n can be calculated
recursively as follows [5]:

Jn(Θ, X) =

(
∂hn
∂X

)
Σ−1

(
∂hn
∂X

)T
+ Φ−1(n− 1, n)TJn−1(Θ, X) Φ−1(n− 1, n),

(10)
with J0 = P−1

0 where P0 is the covariance matrix of the
a priori distribution of X , reflecting the initial uncertainty,
where Φ is the transition matrix. Since the gust is assumed to
be constant during the aircraft’s movement, Φ(n−1, n) is the
identity matrix. Note that the derivative

(
∂hn

∂X

)
and the Von

Karman correlation matrix Σ depend on lidar axes angles Θ
(8). Indeed, Σ depends on the spatial correlations between the
measurements points rij on the lidar axes (Fig. 3).

B. Optimization criterion

The optimization criterion will be based on the CRLB at the
last measurement’s time. Specifically, we’ll use the following
criterion:

σB(Θ, X) = − log det (Jn(Θ, X))

= log det (CRLBn(Θ, X)) ,
(11)

where Jn is defined in (10). We want to minimize this criterion
with respect to the lidar angles Θ. This criterion represents
global information about the state X given the measurements.
At measurement time k to minimize this criterion using
gradient descent algorithms, we must compute the following
derivatives:

∂

∂Θi
log det(Jk) = Tr

(
CRLBk(Θ)

∂

∂Θi
Jk(Θ)

)
, (12)

which involves the following derivatives (10):

∂

∂Θi
Hk =

(
∂hk
∂X

)T
∂Σ−1

∂Θi

(
∂hk
∂X

)
+

∂

∂Θi

(
∂hk
∂X

)T
Σ−1

(
∂hk
∂X

)
+

(
∂hk
∂X

)T
Σ−1 ∂

∂Θi

(
∂hk
∂X

)
,

(13)

where: 
Hk

def
=

(
∂hk
∂X

)
Σ−1

(
∂hk
∂X

)T
∂Σ−1

∂Θi
= −Σ−1 ∂Σ

∂Θi
Σ−1.

(14)

Derivatives at the last measurement time ∂
∂Θi

Jn(Θ) are cal-
culated recursively by means of (10). All of derivatives that
appear in (14) can be calculated explicitly using the measure-
ment equation (6).

C. Min-max optimization problem

The information matrix Jn (10) depend on the unknown
gust state vector X (3), so the minimum of σB(Θ, X) with
respect to Θ (11) varies with X . We suggest the following
approach to overcome this problem. The airplane with larger
wing aspect ratio is very sensitive to gusts perpendicular to
the plane formed by the wings, for which the vector e (1)
is perpendicular to the plane xy and for which the vector
u is parallel to the Ox axis (Fig. 1). The set of such gusts
considered critical is denoted by C. The optimization will
focus on critical gusts. We want to find the lidar axes angles
Θ that minimize the largest estimation error when the gusts
belong to C (the worst-case value). The optimization we are
considering is thus treated as a min-max problem described as
follows:

min
Θ

max
X∈C

σB(Θ, X). (15)

There is no guarantee of a global saddle point for this problem,
since the criterion σB(Θ, X) is a priori neither convex in
Θ nor concave in X . Classical Newton min-max algorithms
[6] cannot be applied. We propose the following simplified
optimization problem:

min
Θ

max
X1,··· ,Xm∈C

σB(Θ, X1, · · · , Xm). (16)

The sample {Xi}1≤i≤m is generated according to a Gaussian
distribution in which the vector e (Fig. 1) is sampled around
critical values perpendicular to the plane xy. We assume that,
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for a sufficiently large m, both optimizations (15) and (16) are
roughly equivalent.
In this formulation (16), the optimization can be solved by the
routine fminimax from Matlab using a Sequential Quadratic
Programming (SQP) method [7]. Using derivatives (12), (14)
convergence is fast. However, there is no guarantee that a
global minimum will be reached. Several random initializa-
tions of the parameter Θ are required.

IV. NUMERICAL SIMULATIONS

We restrict ourselves to N = 4 axes with axial symmetry
around the axis Ox (Fig. 3). The aim of future work will
be to remove this constraint. Minimization of the criterion
σB(Θ, X) (16) focuses on 4 lidar angles:

Θ = (θ1, φ1, θ2, φ2)T . (17)

Due to axial symmetry, the 4 lidar axes whose configuration
we want to optimize with respect to Θ are expressed in the
following way:


a1 = (sin(ϕ1) sin(θ1), sin(ϕ1) cos(θ1), cos(ϕ1))T

a2 = (sin(ϕ2) sin(θ2), sin(ϕ2) cos(θ1), cos(ϕ2))T

a3 = (sin(ϕ1) sin(θ1),− sin(ϕ1) cos(θ1), cos(ϕ1))T

a4 = (sin(ϕ2) sin(θ2),− sin(ϕ2) cos(θ2), cos(ϕ2))T

(18)

A. Scenario data

We consider a scenario with the following data:
• Means of the gust parameters: V̄0 = 10m/s, L̄g = 200 m,
x̄g = 200 m, ᾱ = 90 deg, β̄ = 90 deg, γ̄ = ± 90 deg

• Measurements: 21 evenly measurement points distributed
over the interval [100m, 300m] for each lidar axis,
measurements are taken every 0.05 s for 0.6s

• Large turbulence scale L0 = 750 m, turbulence standard
deviation: σT = 2 m/s

• Aircraft speed = 200 m/s
The critical gust samples {Xi}1≤i≤m (16) are generated ac-
cording to the following mixture of two Gaussian distributions,

Xi ∼
1

2
φ(X̄1,Ω) +

1

2
φ(X̄2,Ω), (19)

where: {
X̄i = (V̄0, L̄g, x̄g, ᾱ, β̄, γ̄i)

T

Ω = diag (σ2
V0
, σ2

Lg
, σ2

xg
, σ2

α, σ
2
β , σ

2
γ).

(20)

The distribution of the samples {Xi}1≤i≤m is bimodal, with
half of the samples generated at γ̄1 = 90 deg and the other
half at γ̄2 = -90 deg. Variance values are set as follows: σV0 =
3m/s, σLg

= 50m, σxg
= 50m, σα = 20 deg, σβ = 20 deg, σγ

= 20 deg. The choice of σγ is such that unit vector e, giving
the direction of the wind in the gust, is close to ± 90 deg.
At these values, the samples {Xi}1≤i≤m belong to the critical
gust region C (16) for the aircraft.

Fig. 4: Optimum lidar axes configuration.

B. Min-max optimization results

We consider m = 100 objective functions, i.e, we generate
100 critical gusts according to (19). For each value of the lidar
angles Θ, the optimization algorithm fminimax from Matlab
must calculate 100 evaluations of the criterion σB (11) and
100 evaluations of the gradient (12). Minimizing this criterion
yields several local minima. Therefore, we have performed 50
initializations of Θ for the optimization algorithm.
The optimal lidar angles Θ̂ (17), expressed in degrees, are as
follows: θ̂1 = 62.2, φ̂1 = 115.9, θ̂2 = 12.7, φ̂2 = 22.7. The
angle between the lidar axis a1 and the line Ox is 36.6 deg
and the angle between the lidar axis a2 and the line Ox is
85.1 deg. Fig. 4 shows the optimum lidar configuration.
To quantify the robustness of the min-max optimization, we
compare the estimation error results obtained by a specific
lidar configuration with those given by the min-max solution.
The specific lidar configuration is obtained by minimizing the
criterion σB(Θ, X) with respect to Θ by setting X = X̄ ,
which is the mean of the critical samples (20). The figures
(Fig. 5 to Fig. 8) show the estimation errors (standard de-
viations) of the first 4 gust parameters components (3). The
other components are not shown due to lack of space. For
example, for the velocity V0 (Fig. 5), we can see that the
specific lidar configuration produces large errors for a large
number of critical gusts. In contrast, the errors produced by
the min-max solution are controlled over the entire range of
critical gusts.
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Fig. 5: Std dev of V0 (m/s) for the min-max solution (blue)
and specific solutions (red) as function of the critical samples.

Fig. 6: Std dev of Lg (m) for the min-max solution (blue)
and specific solutions (red) as function of the critical samples.

Fig. 8: Std dev of α (deg) for the min-max solution (blue)
and specific solutions (red) as function of the critical samples.

Fig. 7: Std dev of xg (m) for the min-max solution (blue)
and specific solutions (red) as function of the critical samples.

V. CONCLUSION

We have proposed a method for optimizing the configuration
of the wind lidar axes to best estimate the shape and the
strength of gusts in turbulence. The optimization, based on
the Cramér-Rao lower bound, is robust to gusts since it
relies on min-max criterion in which the lidar axis angles are
optimized for the set of gusts critical to the aircraft. To address
local minima, more effective optimization methods can be
considered [8]. Simulation results demonstrate the robustness
of the proposed method. It would be interesting to estimate the
parameters, assumed here to be known, that define the spatial
correlations of the turbulence.
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