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Abstract—Here we propose an unsupervised anomaly detection
framework for identifying abnormal dynamics in multi-agent
systems from multivariate accelerometer observations. The ap-
proach, which is agnostic to the number of agents providing
data, employs neural autoencoder architectures to model normal
behavior at the level of the individual entity. To detect meaningful
crowd-level anomalies, we compute the mean of the reconstruc-
tion error across all entities at each time step. This aggregation
mitigates the influence of isolated or transient anomalies in
individual entities, reducing the likelihood of false positives
and highlighting prominent irregularities in collective behavior.
Unlike video-based methods, which require complex real-time
processing and face challenges from, e.g., poor visibility and
occlusions, we leverage crowd-sourced accelerometer data with
lightweight processing, avoiding external assumptions or complex
models. The proposed autoencoder architecture further reduces
training time while maintaining efficiency. Experiments using
a new synthetic crowd movement dataset, generated through
simulation specifically for crowd anomaly detection, along with
another dataset, demonstrate the method’s effectiveness and high
precision in detecting anomalous behaviors. Given the lack of
publicly available datasets in this domain, our dataset fills a
critical gap, offering a valuable resource for advancing research
in this area.

Index Terms—Crowds, Anomaly Detection, Multi-Entity, Mul-
tivariate time series.

I. INTRODUCTION

Anomaly detection in multivariate time series data is a
critical problem in various fields, including industrial sys-
tems [1], finance [2], and healthcare [3]. The objective is to
identify deviations from normal behavior, which can indicate
underlying entity failures or other irregularities. This task is
particularly challenging because in most real-world scenarios
we only have access to “normal” data, and anomalies can take
many forms that are not predefined. As such, the problem
becomes one of detecting changes in system behavior without
prior knowledge of how these changes might manifest, which
makes anomaly detection a highly complex problem. Many
applications of practical interest require online methods, where
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the model continuously processes incoming data and monitors
the system for any signs of anomalous behavior. In the context
of industrial systems, for example, real-time identification of
critical events, such as system failures, is required rather than
post-analysis of historical data. Such is also the case for the
primary application driving this work: detecting anomalous
behavior in multi-agent systems; that is, crowds, from time
series provided by the individual agents. Our approach is
motivated by security applications where video data is not
available but we can acquire “data streams of opportunity”,
such as accelerometer time series, from members of a com-
munity (e.g. school, commuters at a transit station, etc.) who
opt into the use of such a system [4]. In such cases, real-
time anomaly detection is crucial for minimizing risks and
improving decision-making.

Challenges: This work focuses on crowd anomaly detection,
where the challenge is compounded by the fact that the
number of entities contributing to the multivariate data (e.g.,
individuals) is not known a priori and may change over
time. Most multivariate time series anomaly detection methods
are designed for entity-level analysis, but crowd surveillance
must account for diverse behavioral variations that do not
necessarily indicate anomalies. Moreover, these methods fail
to balance detection performance with computational overhead
[5], which poses challenges in maintaining efficiency in real-
time performance in large-scale crowd monitoring.

Existing Methods and Limitations: Existing crowd anomaly
detection methods, such as SIMulated crowd data for anomaly
detection and prediction (SIMCD) [6] and Anomaly Detection
Using Hierarchical Temporal Memory in Crowd Management
(HTM) [7], rely on aggregating individual-level features (e.g.,
speed, heading) into global averages and using higher-level
metrics such as crowd density, agent count, and level of
crowdness. However, these approaches face several limitations.
Natural variations in behavior can cause false positives or
negatives, making it difficult to distinguish genuine anomalies
from typical crowd dynamics. Additionally, extracting such
features often requires video or similar input sources, which
poses challenges such as computational overhead and potential
privacy concerns. Similarly, the method in [8] extracts statisti-
cal features from continuous acceleration and discrete motion
data (e.g., mean, skewness, standard deviation, among others).
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Fig. 1. Proposed method pipeline. Anomaly detection framework utilizing an entity-level model for processing F' sensor data streams over 7' points in
time from P entities. The data for each of the P agents is fed into the pre-trained model, and the reconstruction error is computed using Mean Squared
Error (MSE) across the F' sensors. A unified anomaly score is obtained by aggregating the MSE across entities at each time step. A thresholding approach

is applied to label data points.

Although this reduces data dimensionality and facilitates the
use of basic classifiers, such as Random Forest and KNN,
which were employed in their study, it oversimplifies the rich,
dynamic information present in raw sensor data. Moreover, this
approach relies on supervised learning, where ground truth
labels for normal and anomalous events guide the model’s
learning. However, labeled crowd anomaly data are often
scarce, difficult to obtain, and subjective, limiting the model’s
generalization to new or unseen anomalies. Furthermore, pe-
riodic retraining with updated labels is resource-intensive and
restricts scalability and real-time applicability.

Contribution: In this work, shown in Figure 1, we propose
a novel crowd anomaly detection approach that addresses
key limitations of existing methods such as [6]-[8]. We feed
crowd-sourced data into a model to learn the underlying
normal crowd dynamics. By calculating the reconstruction
error for each individual, we capture localized anomalies that
may be overlooked when aggregating features into global
averages. To compute a comprehensive anomaly score, we
calculate the mean reconstruction error across all entities at
each time step to capture the collective behavior of the crowd
and detect global anomalies. The final step involves comparing
the anomaly score with a threshold to distinguish normal from
abnormal behavior.

The remainder of this paper is organized as follows. Section
II defines the problem and Section III reviews related work
on multivariate anomaly detection at the entity level. In
Section IV, we present the proposed method, including the
autoencoder, statistical analysis, and thresholding technique.
Section V describes the new crowd dataset generated using
Unity. Sections VI and VII outline the experimental setup,
evaluation metrics, and results.

II. PROBLEM FORMULATION

Here we consider data generated by P entities, each associ-
ated with F' sensors (e.g., an accelerometer would provide F' =
3 signals corresponding to the acceleration in each of three

orthogonal directions). For entity p € [P] = {1,2,..., P}, at
time step ¢ € [T], x5, is the datum collected from sensor s,
and X, € R¥ denotes the vector containing all F sensor’s
reading. The complete dataset forms a tensor X € RFXTxP,

To make the model more robust, we normalize the data
using z-score normalization and convert it to time-series
windows, both for training and testing. We normalize the time
series data as follows:

Totp Tsitp — Hs (1)
Os
where 15 and o are the mean and standard deviation of sensor
s readings from train set, respectively.
To model the dependence of a data point X, , at time step
t, we consider a window of size w. For ¢ > w the data from
entity p over a window of size w consecutive time steps is

represented as:
W = (Xt i1 Ximwtaps - Xep) €RTV(2)

For ¢t < w, we apply replication padding [9] to ensure that
the window length remains consistent at w. For all entities
p € [P], the data from all F' sensors with the ¢-th window is
aggregated into a tensor S; € RF>*w*P whose frontal faces
[10] are given by Wzgt).

We aim to detect anomalies in the behavior of P entities
over time, specifically by identifying deviations from the nor-
mal collective behavior of the system. An anomaly represents
a significant deviation in the signals from one or more entities
that differs from the expected behavior of the entire system.
Although we compute an anomaly score for each point within
the window, we focus solely on the score at the last time step to
enable real-time anomaly detection and respond to anomalies
quickly [11]. Formally, the problem can be described as
determining a mapping A (S;) : RE*wxP — (0 1}. The
function A (S;) returns a single binary value for each time
step t, where a zero means that the crowd behavior at time ¢
is normal, while a one denotes an anomalous behavior.
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III. RELATED WORKS AT THE ENTITY-LEVEL

Multivariate time series anomaly detection has drawn signif-
icant research attention, leading to models that detect complex
patterns and anomalies at the entity level. We review two
state-of-the-art models, USAD [12] and TranAD [9] which
address challenges like temporal dependencies, multivariate
correlations, and subtle anomaly detection in complex patterns.

USAD [12] utilizes a dual autoencoder structure with a
shared encoder and two decoders to learn patterns in mul-
tivariate time series without labeled anomalies. It trains in
two phases: a conventional autoencoder phase followed by
an adversarial phase that amplifies reconstruction errors for
anomalous data, helping to distinguish normal from abnormal
patterns. USAD captures complex relationships within multi-
variate time series data with minimal supervision.

TranAD [9] is a Transformer-based anomaly detection
model designed to address the limitations of recurrent neural
networks by capturing both short- and long-range depen-
dencies in time series. Using a self-attention mechanism, it
assigns dynamic weights to each time step, highlighting crucial
parts of the sequence to detect subtle anomalies. With an
encoder-decoder architecture, TranAD reconstructs the input
and identifies anomalies through reconstruction errors. Its
ability to capture global dependencies makes it ideal for
complex temporal tasks.

IV. PROPOSED METHOD

Similar to [13], our method uses an autoencoder-based
architecture to capture normal patterns in the data, followed
by statistical analysis to compute the mean reconstruction
error across individuals for anomaly assessment. Anomalies
are detected when the calculated anomaly score exceeds a
predefined threshold, indicating abnormal crowd behavior.
Unlike methods such as [6]-[8], which rely on video or
more complex processes, our approach processes each entity’s
data stream and aggregates the reconstruction errors across
multiple entities. It enables the detection of collective anoma-
lies without requiring video processing or extensive feature
engineering. The method consists of three stages: Autoencoder
for learning normal patterns, anomaly score calculation, and
anomaly detection.

Autoencoder: As illustrated in Fig. 1, we consider three
schemes for entity-based data analysis: USAD, TranAD, and
a straightforward autoencoder with dense layers. At each
time window indexed by ¢, and for the p-th entity, these
models process ngt) and output a reconstruction of the input,
from which a scalar reconstruction error is computed for
each timestep within the window. Reconstruction errors are
calculated for each entity p at each time step ¢ within a
window, based on the output generated by the decoder. The
mean squared error (MSE) between the reconstructed feature
vector )A(t,p and the input feature vector, X, , is used as a
function of time and entity for further processing. Specifically,
using the notation at the start of Section II, the sensor-averaged

mean squared error for entity p at time ¢ is calculated as
follows:

F
N 1 .
Etp = MSE(Xt,py Xt,p) = F Z (xs,t,p - xs,t,p)2 (3)
s=1

Anomaly Score: To compute the crowd-wide anomaly score,
i, we calculate the mean of MSE values, e; ;,, across all P
entities at each time step ¢ within the window :

1 P
=5 pz::l et p 4)

This aggregation allows us to capture the collective crowd
behavior, as individual entity anomalies might not fully reflect
true anomalies in the crowd. For example, a temporary in-
crease in the reconstruction error of one entity may not indicate
a crowd anomaly if the reconstruction errors of other entities
remain stable.

Anomaly Detection: A time point is detected as an anomaly
if the calculated anomaly score, (i, exceeds a specified thresh-
old. Specifically, if the anomaly score at time ¢ is greater than
a threshold 7 > 0, then the behavior of the systems at that
time step is anomalous:

A(S) = Loifu > 7 5)
YTl0 ifpe <t

V. DATASETS FOR EVALUATION

The proposed method is evaluated on two datasets: a
synthetic crowd motion dataset and the publicly available
Tennessee Eastman Process (TEP) dataset [14]. Due to the
lack of suitable open crowd accelerometer dataset, we generate
our synthetic crowd dataset to assess the effectiveness of our
method in detecting anomalies. While not a crowd detection
dataset, TEP is widely used for anomaly detection [15]. We
use TEP to benchmark our approach against recent methods
and demonstrate its potential applicability to other domains.
This combination of controlled crowd scenarios and industrial
process data allows a comprehensive assessment of the robust-
ness and adaptability of the framework.

Crowd Simulation: This study uses Unity®, a cross-platform
game engine developed by Unity Technologies, to simulate
crowd behavior in a synthetic train station scenario. The
simulation includes both normal and abnormal scenarios, as
shown in Fig. 2, with adjustable parameters such as the
number of agents, time of arrival, and appearance rate to model
different crowd sizes and behaviors. This provides a flexible
environment for testing various situations.

In the normal scenario, agents follow a predictable sequence
of activities: arriving at the entrance gates, moving toward
the train door, and then proceeding to the exit gate. In the
abnormal scenario, an object simulates an emergency, causing
agents to abandon their usual behaviors and rush toward the
exit gate for evacuation, mimicking real-world emergency
reactions. To increase realism, two types of agents are used:
active agents, which provide accelerometer data, and passive
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agents, which have random movement patterns that disrupt the
active agents. This randomization reflects diverse real-world
crowd behaviors.

% A8 -
Passive Agent i

Fig. 2. Normal (left) and abnormal (right) scenarios in a crowd simulation
within a simplified train station scene. The entrance gates, exit gate, train
doors, and the object are labeled for clarity.

During simulation, the z, y, and z coordinates of each
agent’s upper left leg are recorded at each time step. These
positional data are then smoothed using a Savitzky-Golay
filter [16] to reduce artifacts from the Unity simulation. A
second-order numerical differentiator is applied to generate
accelerometer data, simulating a device in the agent’s pocket.
The smoothing step is essential for improving data quality by
minimizing noise and inconsistencies, similar to challenges
faced with real-world data. All data, along with detailed
documentation on the simulation setup and post-processing
techniques, are available in the GitHub repository https://
github.com/bkor-git/AD-Project, enabling further exploration
and replication of this study.

Tennessee Eastman Process: The TEP data set [15] consists
of 52 multivariate time series representing operational features
(e.g., temperature, pressure, flow rates). The dataset includes
one training set with 500 observations of normal operation
and a test set each containing 960 observations for 21 fault
scenarios. For the purpose of model validation, we treat the
dataset as a special case by considering it as a single entity,
where all 52 features are treated as sensor readings. Faults 3, 9,
and 15 are excluded due to their lack of observable deviations
[17]. This special case setup allows for the assessment of
the model’s ability to detect system-wide anomalies in the
context of individual entities, providing a foundation for
further evaluation in multi-entity settings.

VI. TRAINING SETUP

In this study, we employ TranAD, USAD, and a simple
autoencoder (SAE) architecture with dense layers to capture
normal patterns in the data. SAE and USAD utilize the Adam
optimizer [18], while TranAD follows its original implemen-
tation with AdamW. For SAE, we optimize the mean squared
error (MSE) loss with an initial learning rate of 1 x 10~* and
adjust it dynamically using the ReduceLROnPlateau callback
with a patience of 5, a factor of 0.5, and a minimum learning
rater of 1 x 107%. Training is performed with a batch size of
128 for 50 epochs, applying early stopping if the validation
loss does not improve after 5 consecutive epochs. Under these
conditions, SAE loss converge in ~ 15 epochs. A dropout rate

of 0.1 is applied after each layer to prevent over-fitting. We
fine-tune hyperparameters, including hidden units and dropout
rate, using grid search. For TranAD and USAD this results in
an initial learning rate of 1 x 10~ for these models. While
the batch size remains the same, we find that training for 10
epochs is sufficient to achieve comparable performance.

VII. EXPERIMENTAL RESULTS

Evaluation Metrics: To evaluate our approach, we use the
F1 Score and the area under the receiver operating charac-
teristic curve (AUROC), which are effective for assessing
classification accuracy and the trade-off between true and false
positives [9], [19]. For the non-anomalous dataset, all ground
truth labels are 0, and for the anomalous dataset, data points
are labeled O before the anomaly and 1 after. To classify the
anomaly score, we experimentally determine an optimal global
threshold on the test set anomaly scores by evaluating multiple
threshold values, selecting the one that maximizes the F1 score
[12]. The F1-Score is the harmonic mean of precision (P) and
recall (R):

p_ TP C R- TP ’ _2.P-R
TP + FP TP + FN P+R

Here, TP represents the truly detected anomalies, FP stands

for the falsely detected anomalies, and FN is the misclassified

normal samples. These metrics ensure a robust evaluation and
enable consistent comparisons with state-of-the-art methods.

TABLE I
RESULTS IN TERMS OF TRADITIONAL PERFORMANCE METRICS OF
EVALUATED STATE-OF-THE-ART METHODS (AUROC, F1-SCORE).

Method TEP Crowd
AUROC F1 AUROC F1
USAD 0.929 0.893 0.990 0.948
TranAD 0.928 0.893 0.989 0.944
Ours (SAE) 0.948 0.917 0.993 0.954

Results: The performance of our SAE method was evaluated
on the TEP and Crowd dataset, alongside TranAD and USAD,
as state-of-the-art baselines for entity-level anomaly detection.
Most existing methods for multivariate time series anomaly
detection utilize a point adjustment approach, originally pro-
posed by [20], to calculate performance metrics. However, its
reliance on ground truth labels limits its applicability in real-
world scenarios, where such labels are often unavailable. To
address this, we present the results without point adjustment,
which allows for an assessment that aligns more closely
with real-world anomaly detection scenarios. Table I presents
the results in terms of AUROC and F1-Score. While all
the methods demonstrate strong performance, our approach
achieves the highest AUROC across both dataset: 0.948 on
the single-entity dataset TEP, and 0.993 on the multi-entity
dataset Crowd. Additionally, SAE achieves the highest F1-
score on both datasets, demonstrating a better balance be-
tween precision and recall. Despite its simple autoencoder-
based architecture, our method slightly outperforms USAD
and TranAD, suggesting its ability to learn robust anomaly
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representations without the added complexity of advanced
architectures. These results highlight the effectiveness of our
proposed model not only in multi-entity scenarios but also
in single-entity cases, demonstrating its broad applicability in
real-world multivariate anomaly detection tasks.

Training Time: To evaluate computational efficiency, we
compared its training time per epoch with that of existing
baseline methods in the same computational environment.

TABLE II
COMPARISON OF TRAINING TIMES (SECONDS/EPOCH) FOR THE CROWD
DATASET.
Method USAD TranAD | Ours
Training Time (s/epoch) | 2020.75 85.16 11.04

Table II shows significant differences in the efficiency of
training time between methods. In particular, the proposed
method achieves a training time of 11.04 seconds per epoch,
making it approximately 7.7 times faster than TranAD and
183 times faster than USAD. This substantial efficiency gain,
primarily due to the simplicity of the model architecture, un-
derscores its suitability for real-time and resource-constrained
applications.

VIII. CONCLUSION

In this study, we develop and evaluate an autoencoder-
based anomaly detection model for multi-entity multivariate
time series data, with a specific focus on identifying crowd
anomalies using synthetic accelerometer data. The model
analyzes changes in the MSE of entities over time to detect
anomalous behavior. Comparative evaluation against state-of-
the-art methods, such as TranAD and USAD, demonstrated the
effectiveness of the proposed approach in identifying anoma-
lous events within crowd scenarios and enabling fast training.
This work lays the foundation for several promising research
directions. First, integrating accelerometer data with additional
sensor modalities, such as gyroscope and Wi-Fi signals, could
enhance the robustness and reliability of the model in real-
world crowd-monitoring applications. Furthermore, while the
current study emphasizes anomaly detection, future research
will investigate advanced change point detection techniques.
Specifically, applying these methods to the anomaly score may
significantly improve the precision and timeliness of detecting
critical changes in complex and dynamic environments.
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