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Abstract—In this work, we introduce a novel method of
generating a realistic, human-like path-to-safety prediction for
aircraft crash survivors using heuristic-based decision-making
A-Star algorithm and Gradient Descent (GD). The rescue of
survivors of a crash, that occurs in a rural or wilderness setting, is
filled with uncertainty regarding the movement of survivors from
the point of the crash to the point of rescue. Our study analyzes
the movements of aircraft crash survivors using circuit theory to
model connectivity in heterogeneous landscapes with Circuitscape
and QGIS software. Here, given possible points on a terrain
map, Circuitscape will generate all possible current connections
between them. A-Star search algorithm and GD is then applied
to find the most human-like path from the connections. While
the least-cost path can also find the shortest route, it requires
a full geographic knowledge of the interlying region between
start and end points. However, the crash survivor might not
have access to such knowledge. By integrating A-Star search
algorithm and GD, combined with Circuitscape preprocessing
tool, our method successfully models realistic movement patterns
throughout the survivors journey. This will reduce rescue time
for crash survivors.

Index Terms—A-star search algorithm, gradient descent, cir-
cuitscape, path finding, current maps.

I. INTRODUCTION

Path estimation and finding in signal processing is often
referred to the study of techniques used to determine the tra-
jectory of a signal in a given system or environment. Predicting
the probability of signal outage [1] in a specific path and at
some distance is an example of path estimation in wireless
communication. Similarly, path-finding is a broader concept
that involves determining the most efficient route between
two points at some distance from each other, often focusing
on the shortest or least-cost path [2]. These techniques have
been widely applied in fields such as robotics, autonomous
navigation, and geographic information systems (GIS) [3].

In warfare and military operations, service personnel face
various risks, including aircraft or maritime accidents that
leave them stranded in unfamiliar and remote environments
with no access to wireless communication [4]. In such situa-
tions, survivors must navigate difficult terrain to reach a safe
zone as quickly as possible. However, without proper tools
for navigation and communication, their movement remains
unpredictable. This uncertainty creates a significant challenge
for search-and-rescue teams, as locating survivors after iden-

tifying the crash site becomes highly complex. Traditional
search methods rely on approximations and historical data,
but these approaches often fail to account for realistic human
decision-making in survival scenarios.

The application of least-cost path analysis to find the
shortest path between two points relies on multiple factors
and would be similar to a reinforcement learning task [5].
First, it considers the spatial cost associated with traversing a
landscape, such as elevation changes, obstacles, and land cover
types. Second, it assumes that the traveler follows an optimal
decision-making process to minimize effort or energy expen-
diture. While this approach is effective for calculating efficient
routes in structured environments, it often fails to account
for the cognitive and behavioral aspects of human navigation.
In survival situations, individuals may prioritize accessibility,
visibility, or familiarity over the shortest possible distance.
Additionally, unpredictable environmental conditions, such as
weather changes or natural barriers, can influence route selec-
tion, making traditional least-cost path methods inadequate for
modeling human movement in emergency scenarios.

To address this problem, our study leverages heuristic-
based path-finding methods to predict the movement of crash
survivors in wilderness. We propose a novel approach that
integrates Circuitscape [6], [7], a circuit theory-based tool
for modeling connectivity in heterogeneous terrains, with the
A-Star (A∗) search algorithm [8], [9] and Gradient Descent
(GD) [10] to estimate the most probable paths taken by
survivors. In Fig.2, we demonstrate the steps of creating the
current maps to implementing A∗ search algorithm to follow
the path of a crash survivor. Unlike conventional least-cost
path methods, which prioritize distance or energy efficiency,
our approach incorporates environmental factors and human
behavior tendencies. By combining circuit-based connectivity
modeling with heuristic path-finding, our method aims to
generate more realistic and human-like movement predictions,
enhancing search-and-rescue operations.

The rest of the paper is organized as follows: Section II
delves into related works and their method of path-finding. In
Section III, discuss our implementation using A-Star algorithm
and Gradient Descent. Afterwords, in Section IV, we present
the results of testing our method on various maps from aircraft
crash survivors.
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(a) (b) (c)

Fig. 1: Path Finding Complete Process via A∗ Algorithm: The full process of finding the possible paths for a crash survivor.
(a) Is the original map with the point of crash, labeled as Start indicating the crash site, End as the point of rescue, and
points of movement labeled from P1 and P2. (b) The current map generated using Circuitscape software and (c) our A-Star
based path estimation method.

II. RELATED WORK

In this section, we discuss two widely used approaches
to study and estimate a path in archaeology: Circuitscape, a
circuit theory-based software to model connectivity in hetero-
geneous landscape and the Least-Cost Path (LCP) method,
which computes an optimal path based on a predefined cost
function.

A. Circuitscape

Circuit theory analysis is a fundamental tool in electrical
engineering, often used to analyze current flow in a network
of resistors, capacitors, and other electrical components [11].
The governing principle behind this analysis is Ohm’s Law:

I =
V

R
(1)

where I represents the current, V denotes the voltage, and
R is the resistance of the circuit. This foundational equation
extends beyond electrical circuits and has been successfully
applied to spatial modeling in ecology and geographical stud-
ies [12].

Circuitscape, an open-source software written in Julia, uti-
lizes principles from circuit theory to model connectivity in
heterogeneous landscapes [7]. Instead of electrical resistances,
Circuitscape assigns resistance values to different terrain types
based on landscape features derived from satellite imagery
processed in software such as QGIS [13]. By interpreting
terrain as an electrical network, Circuitscape calculates the
effective resistances and current flow between points, which
aids in modeling how entities, such as animals or humans,
traverse an environment [14].

To execute a Circuitscape analysis, the software requires an
input raster map with resistance values and a set of focal nodes,
which represent start and target points in the terrain [15]. The
program offers various connectivity modes: (1) pairwise mode,
which calculates resistance between predefined pairs of points,
(2) advanced mode, where connectivity is determined based

on a broader network, and (3) one-to-all mode, where a single
point is used as a source, and current is spread to all other
locations.

Fig. 1b illustrates an example where Circuitscape generates
a current flow map given an initial crash point and actual points
of movement from a crash survivor. By treating the landscape
as an electrical circuit, Circuitscape enables a probabilistic
assessment of movement routes, which serves as the input for
our A∗ path search algorithm and GD.

B. Least-Cost Path (LCP) Estimation

The Least-Cost Path (LCP) method is widely used in GIS
and environmental modeling to determine the optimal path be-
tween two points by minimizing an accumulated cost function
[16]. This approach is particularly useful in terrain analysis,
where different regions impose varying traversal difficulties.
Given a cost surface C(x, y) that assigns a traversal cost to
each spatial location (x, y), the total cost of a path P from
the source s to the destination d is given by:

C(P) =

n−1∑
i=1

c(xi, xi+1), (2)

where c(xi, xi+1) represents the transition cost between
consecutive locations along the path. The optimal path P∗

is then found by solving:

P∗ = argmin
P

C(P). (3)

The cost function c(xi, xi+1) can be influenced by several
factors, including elevation gradients, terrain roughness, and
land cover types [17].

Despite its effectiveness in structured environments, the
LCP method has limitations when modeling human movement
in complex landscapes. The method assumes that individuals
always follow the globally optimal path based on cost min-
imization, which may not reflect real-world behavior where
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local decisions and psychological factors influence movement.
Additionally, it requires a full geographic knowledge of the
interlaying region between start and end points. However, the
crash survivor might not have access to such knowledge.

III. METHOD

We present our method of path-finding in this section.
Here, we introduce the novel implementation of A-Star search
algorithm and gradient descent-based path estimation to find
all possible paths given a crash point and possible end points
using circuit maps.

A. Gradient Descent/ Ascent

One approach in a path-finding task is gradient-based opti-
mization [10], [18], which formulates the path as a continuous
function and iteratively updates it using numerical methods.
This approach is particularly useful when working with con-
tinuous cost functions to find the global minimum and when
smooth trajectory adjustments are required.

Let x(t) ∈ R2 define a parametric path over time t, where
the goal is to minimize an energy function E(x) that encodes
the traversal difficulty of the terrain:

E(x) =

∫ T

0

f(x(t))dt, (4)

where f(x) represents a local cost function that depends
on environmental factors such as slope, visibility, and terrain
type. The optimal path is obtained by iteratively updating the
trajectory using gradient descent algorithm, where the update
rule is given by:

xk+1 = xk − η∇E(xk), (5)

where η is the step size or learning rate, and ∇E(xk)
represents the gradient of the energy function with respect
to the current path estimate xk. If the negative sing is flipped
to a positive sign, the algorithm becomes gradient ascent.

Gradient-based methods are widely used in robotics and
physics-based simulations, where smooth trajectories are es-
sential [19]. In our implementation, we perform gradient
descent and ascent on the current map. These methods al-
low for adaptive updates based on local terrain variations,
making them more flexible compared to discrete graph-based
approaches like LCP.

B. A-Star Search Algorithm

Path-finding algorithms play a crucial role in many applica-
tions, from robotics and navigation systems to video game AI
and rescue missions. Among them, the A-Star (A∗) algorithm
stands out due to its ability to find the most optimal path
efficiently [20].

A∗ can be defined as a graph traversal and search algorithm
that finds the shortest path between a start node s and a goal
node g using a cost function f(n):

f(n) = g(n) + h(n) (6)

where g(n) represents the actual cost from the start node
s to the current node n, and h(n) is the heuristic estimate of
the cost from n to the goal node g.

A-Star employs a best-first search strategy by iteratively
selecting the node with the lowest f(n). The heuristic function
h(n) is commonly chosen as the Euclidean distance:

h(n) =
√

(xn − xg)2 + (yn − yg)2 (7)

where (xn, yn) are the coordinates of the current node and
(xg, yg) are the coordinates of the goal node.

For path-finding, the current flow map is generated by
Circuitscape, A∗ is then applied to find the most human-like
path from the crash point to possible rescue locations. Unlike
traditional least-cost path methods, which prioritize purely
shortest-distance traversal, A∗ incorporates terrain resistance
and heuristic decision-making. The algorithm follows these
steps:

1) Initialization: Define the crash site as the start node s
and the potential rescue zones as goal nodes g.

2) Open and Closed Lists: Maintain an open list of
nodes to be evaluated and a closed list of nodes already
explored.

3) Node Expansion: Select the path to the node with the
lowest f(n) from the open list and expand its neighbors.

4) Cost Calculation: Compute g(n) based on the resis-
tance values from Circuitscape and update h(n) dynam-
ically.

5) Path Reconstruction: Once the goal node is reached,
backtrack through the parent nodes to reconstruct the
optimal path.

A∗ improves upon traditional methods such as Dijkstra’s
algorithm, which searches all nodes indiscriminately [21], and
the Least-Cost Path (LCP) method, which ignores human be-
havior constraints. Unlike gradient-descent-based path-finding,
which may converge to local minima, A-Star ensures global
optimality by balancing path cost and heuristic estimates. The
algorithm then can be refined as:

f(n) = g(n) + w · h(n), w > 0 (8)

where w is a weighting factor that adjusts heuristic influ-
ence, allowing A-Star to adapt to varying terrain complexities.

The time complexity of A-Star is generally O(bd), where b
is the branching factor and d is the depth of the shortest path.
The algorithm’s efficiency depends on the heuristic function
h(n). If h(n) is admissible, A-Star guarantees the optimal
solution.

Given its flexibility, A-Star has been used in autonomous
navigation, and real-time decision-making systems. In our
case, integrating A-Star with Circuitscape provides a realistic
prediction of survivor movement, ensuring efficient rescue
missions in wilderness.

IV. EXPERIMENTAL RESULTS

In this section, we present the dataset used in this work and
establish the evaluation metrics that will form the basis of our
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Fig. 2: Comparison Graph: Comparison between the common methods of path finding where (a) is the original map with
the points of interest. (b) The current map, (c) Least-Cost path (LCP) method, (d) Gradiant Descent method (GD), and (c) our
A-Star based path estimation method. The Start represent the point of crash, R1 to R5 represent the possible end points, and
End represent the point of rescue.

experiments. These metrics are critical, as evaluating human
behavior in survival situations is inherently complex. We
then discuss the results of our A-Star method in comparison
with the Least-Cost Path (LCP) and Gradient Descent (GD)
methods.

A. Dataset

The total dataset consists of geographic information from 20
World War II aircraft crash sites. These sites were carefully
selected and extracted from a larger World War II crash
database. Each site was processed using QGIS to extract
relevant raster data, including terrain slope and elevation. The
average map size for each site is approximately 50 km by
30 km, providing a detailed spatial representation suitable for
analysis.

In our experiments, we evaluate and showcase the perfor-
mance of our proposed method on nine representative crash
sites. These examples were chosen to highlight the robustness
and accuracy of our approach across varying terrain conditions
and complexities. The remaining sites are reserved for further
validation and generalization assessment in future work.

B. Evaluation Metrics

Human behavior in survival situations varies significantly
depending on environmental conditions, prior training, and
individual instincts. One common survival strategy for crash
survivors is to follow water bodies such as streams, rivers, or
shorelines. These features often lead to settlements and provide
a visible path for potential rescue operations—help signs on
a beach, for instance, can enhance visibility. Additionally, in

life-threatening scenarios, individuals tend to follow visible
signs of human activity, such as roads, trails, or smoke, as
they indicate possible human presence [22], [23].

We input the generated maps fro QGIS into the Circuitscape
software to generate current maps based on a predefined set
of nodes or locations. The crash site in these maps is marked
as Start, while the actual rescue location is labeled as End.

However, in real-time scenarios, experts and rescuers es-
timate the likely rescue location based on environmental
conditions and external factors such as conflict zones or
terrain complexity. To simulate a realistic rescue mission, we
randomly selected multiple points of interest and labeled them
as Ri, where i = 1, 3, 4, 5.

C. Results

To compare the A∗, GD, and LCP methods, we analyze
9 survival scenarios. Figure.1 illustrates the placement of
these points on the original map. The current map represents
the circuit analysis results generated using Circuitscape. A
comparative analysis of the Least Cost Path (LCP), and our
implementation of Gradient Descent (GD) and the A-Star (A∗)
search algorithm demonstrates the differences in performance
when approximating the optimal rescue route.

Table.I evaluates the models’ performance based on the
average distance between the generated route and the actual
rescue point. Our model demonstrates superior performance in
generating a route that closely aligns with the optimal rescue
location.
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TABLE I: Average Distance to a Rescue Point: Comparison
between LCP, GD, A-Star (A∗) algorithms based on the
average distance, in kilometers (km), to the actual point of
rescue across 9 cases.

Case LCP (km) GD (km) A∗ (km)
1 2.764 2.341 0.585
2 2.375 1.071 0.419
3 3.768 1.517 0.121
4 4.355 1.215 0.911
5 1.208 0.278 0.185
6 0.647 0.759 0.094
7 2.447 0.336 0.290
8 5.999 1.351 0.225
9 5.645 2.534 1.969

V. CONCLUSION

Path-finding plays a crucial role in optimizing rescue mis-
sions for crash survivors. In this work, we introduced a novel
approach for crash survivor path finding that integrates A-
Star search algorithm and Gradient descent with circuit theory
that models connectivity in heterogeneous landscapes with
terrain maps. Our results demonstrate that this method more
accurately mimics human movement compared to traditional
approaches such as Least-Cost Path (LCP), making it a promis-
ing tool for enhancing search-and-rescue operations.
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