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Abstract—Securing critical infrastructure, such as power grids,
against cyber threats is essential for national security. As power
grids become increasingly interconnected and reliant on advanced
technologies, the risk of cyber incidents rises significantly. While
existing research offers advanced cyber threat detection methods,
precise attack detection and localization remain crucial. Recent
developments in graph convolutional neural networks (GCNNs)
show promise for detecting and localizing attacks. Existing
approaches typically rely solely on either physical data (e.g.,
power measurements) or cyber data (e.g., network traffic) and
detect only a single attack type, failing to capture diverse real-
world scenarios. In this work, we generate a comprehensive
dataset containing both benign and malicious data—from single-
node attacks to complex simultaneous multi-node attacks—using
a cyber-physical testbed. We propose a multi-task GCNN model
that integrates cyber-physical features for attack detection and
localization. We test the model against various attack types, in-
cluding simultaneous ransomware and false data injection attacks
at different locations. Our experimental results demonstrate that
leveraging the fusion of cyber and physical features using our
multi-task GCNN model yields detection rate enhancements of
15 — 18% and 10 — 14% for attack detection and localization,
respectively, compared to benchmark models, highlighting the
robustness of our approach.

Index Terms—Cyber-physical fusion, false data injection,
graph neural network, multi-task learning, and ransomware.

I. INTRODUCTION

The power grid serves as a cornerstone of global infrastruc-
ture, underpinning critical services [1]. Recently, deliberate cy-
ber attacks targeting critical infrastructure, particularly power
grids, have increased in the United States [2], becoming more
sophisticated, pervasive, and costly, and underlining the need
for robust cyber defense strategies to protect public welfare.
In Ukraine, cyber attacks on the power grid occurred in both
2015 and 2022. In 2015, the Ukrainian grid suffered blackouts
affecting more than 225,000 people as a result of a Russian
cyber campaign [3]. In 2022, another Russian attack targeted
Ukraine’s power grid, causing localized outages [3]. Similar
incidents have been reported in Texas, Hawaii, and India [4],
[5], where power utilities were victims of malicious actors.
Through these recent events, it has been made apparent that
the need exists for improvement in the realm of cyber defense,
intrusion detection, and localization for critical infrastructure.
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A. Related Works

Existing research on intrusion detection systems (IDSs)
for power systems focuses on either cyber or physical data,
overlooking the benefits of integrating both layers. Attack
detection or localization techniques were proposed using only
cyber or only physical features, as reviewed next.

A snort-based IDS against smart grid communications pro-
tocol attacks was proposed [6], but such a system relies
solely on cyber data and does not employ machine learning
techniques. A co-simulated model using synthetic cyber data
was introduced in [7], but it excludes physical measurements,
limiting its effectiveness in detecting cyber-physical interac-
tions. A multi-task approach for detection and localization was
proposed [8], but focuses only on physical measurements and
false data injection (FDI) attacks. Similarly, a joint detection
and localization model was presented [9], but it is based
exclusively on physical data and does not adopt a multi-
task architecture. A model trained on physical features was
proposed [10], but it lacks real-time testing capabilities. A
recurrent long short-term memory-based (LSTM) model for
detection and localization was introduced [11], but it does
not address diverse attack types. Another detection model,
using an expectation maximization algorithm, for FDI attacks
was proposed [12], but it only generates physical data in
MATLAB rather than real-time testbeds. A semi-supervised
approach for detecting FDI attacks was presented [13], but
it relies on algorithmically generated physical measurements.
Time synchronization attacks were investigated [14], but the
study focuses exclusively on physical data. A graph-based
detection and localization framework for FDI attacks was
proposed [15], but the physical data was derived from power
flow calculations, which simulate steady states rather than
dynamically generating data through a real-time testbed.

The aforementioned works are limited by their reliance on
simulations, single-node attacks, and the absence of cyber-
physical fused data, failing to reflect real-world attack scenar-
ios, including simultaneous multi-node attacks, which intro-
duces the need for a more robust multi-task IDS that considers
the cyber-physical nature of power grids.
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B. Contributions

To address the limitations of existing IDSs, we carry out
the following contributions:

o We generate a comprehensive dataset with benign and
malicious samples, with attacks on single-node, complex
multi-node, and multi-attack cases. The data generation is
based on a real-time cyber-physical testbed. The physical
layer is simulated using Opal-RT based on the IEEE 14-
bus system with a load profile to simulate realistic power
fluctuation over time. The cyber layer presents Docker
containers acting as relays and routers.

o We develop a multi-task graph convolutional neural net-
work (GCNN) for simultaneous detection and localization
of attacks by leveraging fused cyber-physical features to
capture spatial and temporal relationships in the power
system, boosting the detection performance compared to
models relying on only temporal or spatial features.

e We evaluate our multi-task GCNN on fused cyber-
physical data against simultaneous FDI and ransomware
attacks, achieving detection rate (DR) enhancements of
15 — 18% and 10 — 14% for attack detection and local-
ization, respectively, compared to benchmarks.

This paper is outlined as follows. Section II describes the
cyber-physical testbed, attack scenarios, and data collection.
Section III presents the proposed multi-task GCNN model
architecture. Section IV presents the experimental results.
Section V concludes the paper.

II. CYBER-PHYSICAL TESTBED DEVELOPMENT

Our testbed comprises a physical layer and a cyber layer.
The physical layer—simulated on an Opal-RT using RT-
Lab—includes generators, loads, and programmable logic
controllers (PLCs), while the cyber layer consists of Docker
containers acting as relays, routers, and interfaces between
the PLCs and the network. Power measurements collected
via Modbus Transmission Control Protocol (TCP) are sent to
ElasticSearch [16]. The testbed data flow is shown in Fig. 1.
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Fig. 1. Data flow through the testbed.

A. Physical Layer

Based on the IEEE 14-bus test system, the physical layer is
implemented via a MATLAB Simulink model running on an
Opal-RT 4610XG hardware accelerator. RT-Lab compiles and
deploys the simulation, which uses a 20-minute load profile to
simulate realistic power fluctuations. The load profile adjusts

default power values by a factor, resulting in deviations of
1-2 MW per timestep. Our Opal-RT supports Modbus TCP,
allowing relays to query bus measurements every 5 seconds.

B. Cyber Layer

The cyber layer comprises 10 cyber nodes managing 14
PLC containers, each with a unique IP address. These con-
tainers simulate devices, such as PLCs, relays, and routers,
within substations, ensuring that traffic appears to originate
from individual PLCs rather than the Opal-RT.

C. Cyber-Physical Interface

Building on our previous design [17], the upgraded interface
enables relays to connect directly to PLCs on the Opal-RT.
Instead of establishing a new connection for each query, each
relay maintains a single persistent Modbus TCP connection to
its assigned PLC, reducing load and preventing system crashes.
Fig. 2 illustrates the revised cyber-physical interface.
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Fig. 2. Abstraction of cyber-physical interface.
D. Cyber Attack Types

We perform three attack types: FDI and ransomware, as
well as a simultaneous combination of FDI and ransomware.
An attacker container is added to the target substation’s local
network to enable the IP spoofing needed for FDI, while the
ransomware attack assumes that the malicious file is already
present on the target device. We launch the three attack types
described next using two cases, against a single node and
multiple nodes at the same time.

o FDI: This multi-stage attack uses address resolution pro-
tocol spoofing to reroute traffic from a target PLC to a
“dummy” PLC, which mimics valid data. A command in-
jection then disables the circuit breaker, disrupting power.
Exploiting Modbus TCP’s weakness, this attack deceives
the control systems while causing physical disruptions.

o Ransomware: This attack starts when an operator runs a
malicious file that connects to a command center, scans
the local network, sends results back, and blocks Modbus
TCP traffic to simulate a lockout. It affects the cyber layer
without altering the breaker state until a full lockdown.

« Simultaneous FDI and ransomware: This attack launches
a combination of FDI and ransomware samples at once.

E. Data Collection and Preparation

We collect physical measurements using ElasticSearch as
a data lake, with relays sampling every five seconds and
forwarding the data, while cyber data is continuously gathered
via tcpdump on all cyber nodes and later converted from
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packet capture (PCAP) to comma-separated value (CSV) files.
For each scenario, including a 15-minute benign baseline and
various attack cases, a complete dataset is compiled. The
cyber-physical features collected are detailed in Table 1.

TABLE I
COLLECTED CYBER AND PHYSICAL FEATURES

Cyber Features Physical Features

Source MAC Address PLC ID

Destination MAC Address Voltage

Source IP Address Current
Destination IP Address Phase Angle

Active Power
Reactive Power
Generator Breaker Status
Load Breaker Status
Shared Edge Active Power
Shared Edge Reactive Power

Protocol
Packet Length
Source TCP Port
Destination TCP Port
Source UDP Port
Destination UDP Port

To prepare the data for the multi-task GCNN, the cyber
data and physical data are processed into CSV files. PCAP
files are converted using tshark and mergecap, then concate-
nated and sorted chronologically, while the physical data is
directly exported from ElasticSearch. Finally, a PLC-to-IP
address mapping function aligns physical measurements with
corresponding cyber traffic.

III. PROPOSED MULTI-TASK GCNN MODEL

We model our system as an undirected graph G = (V, £, A),
where vertices ) represent physical buses and associated cyber
components, edges £ denotes the connections between them,
and A is the unweighted adjacency matrix describing the
relationships between the nodes. Our multi-task GCNN model
captures the grid’s inherent spatial and temporal dynamics,
which our testbed replicates. Our model leverages the cyber-
physical structure for simultaneous detection and localization
through supervised training on benign and malicious datasets.
The labeling scheme of the data is denoted by ) and Z, where
Y is the binary detection label, and Z are the localization
labels. )V is 0 or 1 for normal and malicious states, respectively.
Z represents a vector of size equal to the number of PLCs,
or nodes, where a 1 is in the position of the affected node,
or 0 otherwise. Input features are fed into the model in a
scaled numerical format. As illustrated in Fig. 3, the multi-
task GCNN presents a deep architecture with multiple layers
operating on a single graph. The GCNN structure described
next enables the model to learn representations for both graph-
wide detection and node-level localization simultaneously.
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Fig. 3. Illustration of the proposed multi-task GCNN.

A. Model Input

The inputs to the shared graph layers are the adjacency
matrix and three-dimensional feature matrix M, i.e.,

MERTXNXF, (1)

where T is the number of timestamps, N is the number of
nodes, and F' represents the number of features for a given
node at a given timestamp.

B. Shared Graph Layers

The shared graph layers L process node-level features and
extract node-level embeddings. Each graph convolutional layer
[ applies a Chebyshev polynomial filter:

X! =ReLU(p! xg X7 4+ 0, )

where p! € REXc-1Xc are the Chebyshev coefficients, c
denotes the features, *g represents the graph convolution
operator, and b' € R® is the bias. Beyond the shared layers
are two task-specific paths: detection and localization.

C. Detection and Localization Layers

Following the shared graph layers L are the task specific
Chebyshev layers Ly o3 where {1,2} are the detection and
localization tasks, respectively. The task-specific layers extract
the features most relevant to their assigned task. The first layer
7 in each task receives output from X; € R"*¢ of the last
shared layer then generate the output X;. € R"*“tr. Then
the rest of the task specific layers take X, , € R"*“T-1 as
their inputs. The task specific layers then output X, ,, €
]RnXCLT{lﬂ} )

D. Model Output

After passing through the shared L and task-specific L7 2y
layers, a dense layer determines the probability of an attack
and generates outputs using the sigmoid activation function

sigmoid(Wr, . X1 + br,.) 3)

where Wp,,. € R"*Lr represents the feature weights for each
task, and bz, € R is the corresponding bias. Incorporating
bias terms alongside activation functions such as sigmoid
improves the ability of the model to capture complex patterns
by increasing non-linearity [18]. The task-specific output layer
then generates a prediction for each task, classifying the
entire graph for the first task (detection) and pinpointing the
affected node for the second task (localization). The final layer
serves as an aggregation module, refining the final decision by
leveraging information extracted in earlier stages.

E. Model Training
The multi-task GCNN objective function is described as:

Clp.0) = —5 3 {alog(p) + (1 - a)log(1 ~p)}, )
X1r

where 6 represents the trainable parameters (u!, b, W%, bF)
for all layers [(-). S is the number of training samples Xtg.
p and a are the final predicted and actual labels, respectively.
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TABLE II
DETECTION RESULTS OF ATTACKS ON A SINGLE NODE (%)

Model
Scenario Data FNN LSTM CNN GCNN
DR FAR F1 DR FAR F1 DR FAR F1 DR FAR F1
C 77.8 253 75.5 81.7 19.9 80.2 83.8 14.2 85.4 95.5 2.1 92.1
Single-node Ransomware P 76.0 29.0 73.4 79.3 234 78.0 83.2 18.8 84.3 94.0 2.9 90.8
CcpP 81.2 225 79.4 84.9 15.6 83.6 86.1 114 87.6 97.4 0.03 94.1
C 74.9 28.4 74.3 78.3 20.2 77.0 79.3 15.6 81.4 93.9 2.8 95.0
Single-node FDI P 73.1 31.8 72.0 75.9 23.7 74.4 71.9 20.4 80.0 92.4 33 94.1
Cp 79.3 24.6 77.2 81.1 17.1 80.0 82.4 13.0 84.1 96.4 0.04 97.3
C 73.6 28.8 71.6 75.9 22.0 75.6 77.6 16.2 80.7 92.9 3.6 93.6
Single-node FDI & Ransomware P 71.1 323 69.0 73.3 25.6 73.2 76.4 21.0 79.8 91.6 4.1 92.5
Ccp 77.9 26.0 75.7 79.9 18.7 78.6 80.9 14.3 82.9 95.3 0.1 96.4
TABLE III
LOCALIZATION RESULTS OF ATTACKS A SINGLE-NODE (%)
Model
Scenario Data FNN LSTM CNN GCNN
DR FAR F1 DR FAR F1 DR FAR F1 DR FAR F1
C 83.2 21.0 82.5 85.3 14.8 84.4 90.1 11.6 90.9 96.9 2.8 97.0
Single-node Ransomware P 81.2 25.0 80.4 83.2 18.8 82.2 89.1 15.8 89.5 96.1 33 95.9
Cp 86.3 17.3 86.1 88.5 12.1 88.4 92.0 8.2 92.8 98.0 0.01 99.0
C 80.0 233 81.1 81.1 17.5 81.3 86.2 11.8 85.9 96.1 2.0 95.9
Single-node FDI P 77.6 27.1 78.6 79.3 214 78.8 85.3 15.9 84.7 94.8 2.6 94.5
CpP 84.1 19.2 84.4 84.9 13.7 84.7 88.3 9.7 88.9 97.7 0.02 98.7
C 78.0 24.6 78.8 79.9 19.2 79.8 83.7 14.4 84.6 95.4 1.3 96.4
Single-node FDI & Ransomware P 75.6 279 77.0 77.9 23.2 77.6 82.3 18.6 83.6 94.4 2.2 95.5
CcpP 82.5 20.7 83.1 83.4 15.3 83.1 86.9 11.3 87.6 97.0 0.08 98.2
TABLE IV
DETECTION RESULTS OF ATTACKS ON MULTI-NODES (%)
Model
Scenario Data FNN LSTM CNN GCNN
DR FAR F1 DR FAR F1 DR FAR F1 DR FAR F1
C 74.3 29.0 73.1 75.6 22.7 76.1 78.9 17.6 79.6 95.2 2.3 95.1
Multi-node Ransomware P 71.7 32.7 70.9 73.6 26.0 74.2 78.1 21.9 78.8 93.7 2.9 93.5
cp 78.1 259 76.2 79.8 18.5 78.9 81.1 14.2 82.9 96.4 0.04 97.3
C 73.1 30.9 71.0 75.3 23.1 73.7 77.9 18.4 78.4 93.9 3.1 95.3
Multi-node FDI P 70.7 342 68.8 73.3 26.3 713 76.9 22.9 77.2 923 3.9 94.3
cp 71.3 26.5 75.4 79.3 19.2 78.0 80.6 15.0 81.9 96.1 0.06 97.2
C 73.0 255 70.6 75.2 18.2 74.4 77.1 12.9 79.1 93.2 2.2 93.9
Multi-node FDI & Ransomware P 71.1 29.1 68.2 72.6 222 722 76.5 17.5 78.2 92.1 3.2 93.0
Cp 77.1 222 74.9 78.8 14.8 717.6 80.2 10.6 81.8 94.9 0.3 95.8
TABLE V
LOCALIZATION RESULTS OF ATTACKS ON MULTI-NODES (%)
Model
Scenario Data FNN LSTM CNN GCNN
DR FAR F1 DR FAR F1 DR FAR F1 DR FAR F1
C 794 245 80.6 | 80.2 178  80.6 | 85.0 13.8 852 | 95.8 2.7 97.4
Multi-node Ransomware P 76.8 27.8 78.3 78.0 213 78.4 84.2 17.8 84.1 95.0 3.6 96.1
cp 82.9 20.5 83.4 83.6 14.8 83.3 87.3 10.7 87.5 97.3 0.03 98.7
C 78.4 25.7 77.8 79.6 19.2 79.6 83.1 14.9 85.1 95.2 2.7 97.1
Multi-node FDI P 76.0 29.2 75.6 71.7 22.7 77.8 82.3 19.7 84.5 94.4 3.5 96.3
Cp 82.3 21.3 82.1 82.9 15.5 82.6 86.5 11.5 87.1 97.4 0.05 98.6
C 78.8 20.1 78.2 78.1 14.9 78.6 82.5 10.9 83.2 93.7 1.5 96.0
Multi-node FDI & Ransomware P 76.9 23.6 75.9 75.9 18.5 76.5 81.7 15.3 82.1 92.1 1.9 95.0
Ccp 81.7 16.7 82.1 82.5 11.2 82.3 86.0 7.6 86.7 95.9 0.1 97.4

IV. EXPERIMENTAL RESULTS

For a comprehensive evaluation of detection and localiza-

tion, we use DR = gpite, Fl-score = Npi%’ and
FAR = FI’];%’ where TP, FN, FP, TN denote true positives,

false negatives, false positives, and true negatives, respectively.

A. Model Setup

We evaluate the spatio-temporal-aware multi-task GCNN
trained on cyber-physical fused data against benchmark deep
models. All models are trained on identical setups, datasets, at-
tack scenarios, and sequential hyperparameter tuning methods

[19]. FNN utilizes 3 layers, 32 units, no dropout, and Adam
optimizer. LSTM utilizes 2 layers, 64 units, 0.2 dropout rate,
and Sigmoid optimizer. CNN employs 3 layers, 32 units, 0.2
dropout rate, and Sigmoid optimizer. The proposed GCNN
comprises 3 layers, 64 units, 0.4 dropout rate, the Adam
optimizer, and ReLu activation function.

B. Detection and Localization Performance Results

Our experimental results (as per Tables II - V) reveal
that leveraging the fused cyber-physical dataset consistently
outperforms models trained solely on cyber or physical data
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across all tasks and scenarios. Specifically, using the fused
dataset, all investigated models (for detection and localization
tasks) offer improved DR by 10.5% and 9.8% compared to
using cyber-only and physical-only datasets, respectively, as
the fused dataset utilizes the strengths of each data type to
offer a more holistic system representation. Moreover, using
the fused dataset, our multi-task GCNN model yields, on
average, DR improvements of 14.6 —17.6% and 10.0 — 14.4%
in the detection and localization tasks, respectively, and FAR
enhancements of 12.3-23.9% and 9.4-18.6% for the detection
and localization tasks, respectively, compared to benchmarks,
when evaluated against simultaneous FDI and ransomware
attacks. Analyses of each attack case are provided next.

1) Single-Node Attacks: Tables Il and III detail the per-
formance of the investigated models against ransomware and
FDI, as well as a combination of ransomware and FDI simul-
taneously launched on a randomly selected node as follows.

a) Detection Task: The proposed GCNN model out-
performs benchmarks by 15.3 — 19.3%, 15.2 — 20.5%, and
14.4 — 17.4% in DR using the cyber (C), physical (P), and
fused (CP) datasets, respectively. The GCNN model also
outperforms benchmarks by 12.6 — 25.2%, 16.9 — 28.2%, and
14.2—25.9% in FAR for the C, P, and CP datasets, respectively.

b) Localization Task: The proposed GCNN model out-
performs benchmarks by 18.3 — 22.4%, 12.1 — 18.8%, and
10.1 — 14.5% in DR using the C, P, and CP datasets, re-
spectively. The GCNN model also outperforms benchmarks
by 13.1—23.3%, 16.4 —25.7%, and 11.2 —20.6% in FAR for
the C, P, and CP datasets, respectively.

2) Multi-Node Analysis: Tables IV and V detail the per-
formance of the investigated models against ransomware and
FDI, as well as a combination of ransomware and FDI
simultaneously launched on a randomly selected set of nodes
as follows.

a) Detection Task: The proposed GCNN model out-
performs benchmarks by 16.1 — 20.0%, 15.6 — 21.0%, and
14.7 — 17.8% in DR using the C, P, and CP datasets, re-
spectively. The GCNN model also outperforms benchmarks
by 10.7 —23.3%, 14.3 — 25.9%, and 10.3 —21.9% in FAR for
the C, P, and CP datasets, respectively.

b) Localization Task: The proposed GCNN model out-
performs benchmarks by 11.2 — 14.9%, 10.4 — 15.2%, and
9.9 — 14.2% in DR using the C, P, and CP datasets, respec-
tively. The GCNN model also outperforms benchmarks by
9.4 — 18.6%, 13.4 — 21.7%, and 7.5 — 16.6% in FAR for
the C, P, and CP datasets, respectively.

V. CONCLUSION

This paper investigated the performance of our spatio-
temporal-aware multi-task GCNN for detecting and localizing
cyber attacks, including single-node and multi-node FDI, ran-
somware, and simultaneous attack scenarios. Our experimental
results demonstrated that leveraging the fusion of cyber and
physical features using our multi-task GCNN model offered
detection rate enhancements of 15 — 18% and 10 — 14%
for attack detection and localization, respectively. The ability

of the multi-task GCNN model in capturing spatio-temporal
dependencies through graph structures and leveraging multi-
task learning contributed to its robustness, showcasing its
effectiveness in addressing complex, multi-modal attack sce-
narios. Future works include performing feature selection for
more efficient training.
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