
On Robustness and Out-of-Distribution
Generalization of a Deep Neural Architecture for

Underwater Acoustic Direct Localization
Amir Weiss

Faculty of Engineering
Bar-Ilan University
Ramat-Gan, Israel

amir.weiss@biu.ac.il

Abstract—Neural architectures have emerged in recent years
as potentially enhanced solutions to the longstanding underwater
acoustic localization problem. In this unique domain, nontrivial
physical phenomena, such as depth-varying speed of sound, play
a key role in the environment-dependent propagation model.
Consequently, extracting location-related information of acoustic
emitters, encapsulated in the relevant channel response, is both
analytically and computationally challenging. Thus, deep neural
networks (DNNs), which can circumvent the need for exact
analytical characterizations and solutions, have been considered
a prospective alternative to classical approaches. However, lo-
calization systems are typically required to be robust (in several
respects), a property that DNNs do not necessarily possess. In this
work, we focus on this critical aspect and show through a diverse
set of simulations that our DNN-based localizer consistently man-
ifests such robustness. Specifically, we focus on out-of-distribution
generalization for input data, and show that our model remains
performant under various distributional deviations.

Index Terms—Localization, robust neural network, underwa-
ter acoustics, out-of-distribution generalization, compression.

I. INTRODUCTION

Underwater acoustic localization (UAL) remains a signifi-
cant challenge in applications of growing relevance, ranging
from environmental monitoring and underwater navigation to
surveillance and defense (e.g., [1]–[3]). The unique physical
characteristics of the underwater environment, such as depth-
varying speed of sound and rich multipath propagation, create
considerable complexities in accurately estimating the location
of an acoustic source. For this reason, traditional localization
methods (e.g., [4]), relying on analytical tractability, often
involve simplifying assumptions, which can (and do) lead to
performance degradation when faced with real-world condi-
tions that deviate from the idealized assumptions.

Recent advances, particularly in machine learning, have
opened new avenues for tackling complex signal processing
tasks, including those in challenging environments like un-
derwater acoustics, e.g., [5]–[9]. Unlike classical approaches,
deep neural networks (DNNs) offer the ability to model
(/learn) intricate statistical relations in the data without requir-
ing explicit analytical formulations. This data-driven approach
is particularly appealing in scenarios where the environmental
conditions are either unknown or too complex to model accu-

rately. Consequently, DNNs have been explored as a promising
alternative solution for UAL, offering potential improvements
in computational complexity and accuracy.

However, a significant concern with DNN-based systems
is their generalization ability, particularly when encountering
input data that follows a different distribution from that of
the training data. This issue, known as out-of-distribution
(OOD) generalization [10], is crucial for practical deployment
of future DNN-based localization systems. In underwater en-
vironments, where the physical properties of the medium can
vary significantly across operational scenarios, the robustness
of a localization system to such variations is paramount.

Motivated by the above, we addresses this critical as-
pect by investigating the robustness and OOD generalization
capabilities of a recently proposed DNN architecture for
UAL, referred to as CNN-DLOC [11]. Complementing the
theoretical study in [12] to a general model mismatch, our
main contribution in this paper is a comprehensive robustness
analysis of CNN-DLOC. Specifically, we conduct an extensive
simulation study to evaluate the performance of CNN-DLOC
under various types of distributional shifts, including changes
in the statistical properties of the emitted acoustic waveform
(Section IV-C), perturbations in the attenuation effects (Section
IV-D), and the application of different compression techniques
(Section IV-E). Our results show that CNN-DLOC maintains
robustness across a wide range of OOD scenarios.

II. A DATA-DRIVEN FORMULATION FOR LOCALIZATION

Consider L time-synchronized receivers positioned at dif-
ferent and known locations, each consisting of a single omni-
directional sensor. We assume that an acoustic source, emitting
an unknown waveform, is present at an unknown location,
denoted by p ∈ V ⊂ R3, where V is a three-dimensional
environment of interest (i.e., the “uninformative prior” of p).
We further assume that the source is either static or moves
slowly enough relative to the receivers’ sampling period to be
considered approximately static during the observation time.

In a classical formulation of the UAL problem, we seek a
“handcrafted” signal model based on knowledge of the rele-
vant physics. A solution is then developed for this (simplified)
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model, assuming that it is a sufficiently good approximation
to the true, underlying signal model. In contrast, our approach
employs a data-driven methodology that does not require a
precise analytical signal model, avoiding potentially unjustified
simplifications that could degrade performance.

Accordingly, in the development of our solution, we do not
use knowledge of the environment and the underlying propaga-
tion model, but assume that a dataset of received signals with
labeled source positions D(T )

train ≜ {(x(i)1 , . . . , x
(i)
L ,p(i))}Ti=1

of size T is available. Here, x
(i)
ℓ denotes the i-th example

(/dataset entry) of the received signal at the ℓ-th receiver for
an emitting source located at p(i). We assume the existence of
a statistical model P(x1, . . . , xL;p), encapsulating the relation
between p and (x1, . . . , xL). The assumption regarding the
availability of such a dataset has become relatively common
in ongoing efforts for such a solution approach (e.g., [13]), and
recent technological advancements (e.g., [14]) suggest that it
is soon to be an even more realistic one.

Assuming that the data, or possibly some compressed ver-
sion thereof, from all receivers can be reliably transmitted to a
single central terminal, our goal is to learn an approximating
function, based on the available dataset D(T )

train, for an estimator
of p, denoted as p̂, given the received signals {xℓ}Lℓ=1,
so as to minimize the risk E [L(p̂,p)] for a loss function
L : V × V → R+, where the expectation is with respect to
all the randomness1 in {xℓ}Lℓ=1. In this work, we consider
L(a,b) = ∥a− b∥22, giving the mean-square error risk.

III. DNN-BASED LOCALIZATION

In a recent work [12], an upper bound on the localization
MSE under a general model mismatch was derived. The
simulation therein shows that the neural architecture for 3D
UAL proposed in [11], termed “CNN-DLOC” and illustrated
in Fig. 1, is stable with respect to “small” variations in the
environment-characterizing physical parameters (e.g., sound
speed profile, see [12] for details and the full description).

The CNN-DLOC architecture in Fig. 1, whose basis is
convolutional layers, is trained in two phases. In the first phase,
three “sub-models” are trained to separately estimate range,
azimuth and inclination (r, θ, ϕ, respectively), with custom,
specifically matched loss functions.2 In the second phase,
these models are integrated into a single model, which is then
retrained to jointly estimate the three coordinates, namely the
source position, so as to capture the statistical dependencies
among them. The superior performance of this solution over
relevant benchmarks has been demonstrated in a number of
scenarios with different propagation models [11], [12].

While it is not the focus of this work, we briefly demonstrate
the strength of DNN-based localization via the results of the
in Fig. 2, which presents the localization root mean-square
error (RMSE) vs. the signal-to-noise ratio (SNR). In this
experiment, a small seamount and an undulating surface were

1To be defined explicitly in Section IV-A; see the details below (1).
2We use the mean cyclic error (e.g., [15]) for the angles, which are, of

course, periodic quantities by definition.

considered, and the channel between each of L = 4 source-
receiver pairs was simulated via the Bellhop simulator [16].
As seen, already at 0dB CNN-DLOC outperforms SBL [4]
and the “generalized cross-correlation with phase transform”
(GCC-PHAT) [17], [18] that is known for its resilience to
multipath.

IV. ROBUSTNESS ANALYSIS

We now compliment the analysis in [12] of the neural
architecture from [11] for 3D UAL via an extensive, diverse
empirical study. Specifically, we examine its robustness to
different types of variations in the test set inputs caused by
deviations from the training set’s statistical model. To facilitate
this, we introduce a general signal model that will enable us
to explore various types of such deviations.

A. A General Signal Model
In the underwater environment, the water surface and

bottom, as well as other potential floating objects, serve
as“reflectors” of the source waveform, and give rise to an intri-
cate multipath channel, which can be approximately described
using ray propagation. In such a model, the acoustic wave that
is emitted from the source and measured at the the receiver
is represented as a (possibly infinite) sum of attenuated and
delays versions of the signal, which correspond to different
rays, where each is propagating in a different path determined
by the physical properties of the environment (e.g., sound
speed, bathymetry, etc.). For simplicity, we assume a set of en-
vironmental parameters, denoted by Penv, that fully characterize
the propagation model. Additionally, we hereafter assume that
source is located sufficiently far from all L receivers to permit
a planar wavefront (“far-field”) approximation.

Specifically, we consider the general signal model

xℓ[n] =
R∑

r=1

brℓsrℓ[n] + wℓ[n] ≜ sTℓ [n]bℓ + wℓ[n] ∈ C,

n = 1, . . . , N, ∀ℓ ∈ {1, . . . , L},
(1)

for the received baseband signal of the ℓ-th receiver, where
we have defined sℓ[n] = [s1ℓ[n] · · · sRℓ[n]]

T ∈ CR and bℓ =
[b1ℓ · · · bRℓ]

T ∈ CR, using the notation:

1) brℓ ∈ C as the unknown attenuation coefficient3 from the
source to the ℓ-th sensor associated with the r-th signal
component (line-of-sight (LOS) or non-LOS reflections);

2) srℓ[n] ≜ s (t− τrℓ(p,Penv))|t=nTs
∈ C as the sampled r-

th component of the unknown (possibly random) source
waveform at the ℓ-th sensor, where s (t− τrℓ(p,Penv))
is the analog, continuous-time waveform delayed by
τrℓ(p,Penv), and Ts is the sampling period; and

3) wℓ[n] ∈ C as the overall additive, ambient and internal
receiver, noise at the ℓ-th receiver.

Applying the normalized DFT4 to (1) yields the equivalent
frequency-domain representation for all ℓ ∈ {1, . . . , L},

3These coefficients are actually also a function of the source’s position p
and the environment Penv, but we use brℓ rather than brℓ(p,Penv) for brevity.

4z denotes the normalized discrete Fourier transform (DFT) of z.
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Input

Output

p̂ ≜ [r θ ϕ]
T

Fig. 1: Illustration of the CNN-DLOC architecture for 3D UAL [11]. Input: second-order statistic tensor (all the empirical auto- and cross-correlation
functions between signals from all sensors), Output: position in spherical coordinates. The three sub-model (for range, azimuth and inclination) are first trained
individually, and then trained jointly, with connecting layers and a customized loss function.

(a) Illustration of the simulated ray propagation model using Bellhop.
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(b) Localization RMSE vs. SNR for the three different localization methods.

Fig. 2: CNN-DLOC outperforms benchmark methods for nontrivial prop-
agation model in a simulated environment (with a small seamount), thus
demonstrating the potential of data-driven methods for UAL.

xℓ[k] =
R∑

r=1

brℓs[k]e
−ȷωkτrℓ(p,Penv) + wℓ[k]

= s[k]· dH
ℓ [k]bℓ︸ ︷︷ ︸

a function of
p and Penv

+wℓ[k] = s[k]· hℓ[k]︸︷︷︸
k-th frequency

response

+wℓ[k] ∈ C,

(2)
where we have defined hℓ[k] ≜ dH

ℓ [k]bℓ ∈ C, and

dℓ[k] ≜ [e−ȷωkτ1ℓ(p,Penv) · · · e−ȷωkτRℓ(p,Penv)]H ∈ CR, (3)

with {ωk ≜ 2π(k−1)
NTs

}Nk=1. As shorthand, we further define

xℓ ≜ [xℓ[1] · · · xℓ[N ]]
T
,wℓ ≜ [wℓ[1] · · ·wℓ[N ]]

T
,

Dℓ ≜ [dℓ[1] · · ·dℓ[N ]]
H
,Hℓ(p,Penv) ≜ Diag (Dℓbℓ) ,

as well as s ≜ [s[1] · · · s[N ]]
T, where Diag(·) forms a diagonal

matrix from its vector argument. Note that Hℓ(p,Penv) is a
nonlinear function of the unknown source position p and

the environmental parameters Penv, as seen from (3). Indeed,
{τrℓ(p,Penv)} are generally nonlinear (nonidentical) functions
of p. With this notation, we may write (2) compactly as

xℓ = Hℓ(p,Penv)s+wℓ ∈ CN , ∀ℓ ∈ {1, . . . , L}. (4)

Assuming a statistical relation P(x1, . . . , xL;p) between
p and {xℓ}, which depends (nonlinearly) on {Hℓ(p,Penv)},
the sheer complexity of the UAL problem, which consists of
estimating p from {xℓ}Lℓ=1, is now reflected from (4).

B. Robustness of the Oracle Least-Squares Estimator

We shall set our expectations for the best achievable ro-
bustness of a DNN-based localization solution relative to an
oracle solution, which has access to precise knowledge of
the environment and its exact analytical characterization Penv.
Under relatively mild technical assumptions, the oracle least-
squares (LS) estimator of p, namely,

p̂OLS ≜ argmin
p∈V

 min
s∈B

{bℓ∈CR}

L∑
ℓ=1

∥xℓ −Hℓ(p,Penv)s∥22

 , (5)

where B ≜ {x ∈ CN : ∥x∥2 = 1}, is given by [11]

p̂OLS = argmax
p∈V

λmax (Q(p,Penv)) , (6)

where λmax (Q(p,Penv)) denotes the largest eigenvalue of

Q(p,Penv) ≜
L∑

ℓ=1

XℓD
∗
ℓ

(
DT

ℓ D
∗
ℓ

)−1 (
XℓD

∗
ℓ

)H ∈ CN×N (7)

is a data–dependent matrix, where {Xℓ ≜ Diag(xℓ)}Lℓ=1.
The estimator (6), whose derivation is given in [11], is

consistent for an arbitrary unknown waveform s and an
arbitrary set of attention coefficients {brℓ}. We thus conclude
that, at least theoretically, and at least for the general signal
model (4), there exist a robust estimator that is oblivious (in the
consistency sense) to the source waveform structure and the
attenuation coefficients. While this theoretical property may
not be surprising, it is nevertheless nontrivial for a data-driven,
learned solution to possess it. We next demonstrate that CNN-
DLOC indeed reflects such desirable robustness.

C. Robustness to Source Waveform Statistical Characteristics

We consider a scenario with L = 4 receivers, whose
locations are given in Table I. We use the Bellhop simulator
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Fig. 3: 3D Localization RMSE vs. SNR for three different source distribu-
tions: CN (mesokurtic), Laplace (leptokurtic) and uniform (platykurtic). The
trained model demonstrates resilience to the source’s waveform distribution.

x [m] y [m] z [m]
Receiver 1 150 −250 10
Receiver 2 50 −250 15
Receiver 3 −50 −250 20
Receiver 4 −150 −250 25

TABLE I: Positions of the four receivers in Cartesian coordinates.

to generate {Hℓ(p,Penv)}, where in each dataset entry, p is
drawn uniformly and independently from

V =


xy
z

 ∈ R3

∣∣∣∣∣∣
x ∈ (−150, 150) [m]
y ∈ (−100, 0) [m]
z ∈ (5, 45) [m]

 (8)

in Cartesian coordinates, and Penv was set and fixed. For
example, Penv includes the speed of sound profile, which,
unlike the usual isovelocity assumption, is set to be varying
as a function of depth in this case. The full description of Penv

is given in [19]. The attenuation coefficients were drawn in-
dependently from the complex normal (CN) distribution, such
that E

[
|brl|2

]
= 1, with variance 0.12, and we use N = 100.

All results are based on averaging 2 · 105 independent trials.
We test our trained model with random waveforms of three

types of distributions: mesokurtic, leptokurtic and platykurtic.
For this, we choose the CN, Laplace and uniform distributions.
Figure 3 shows the RMSE vs. the SNR for the three types of
waveform distributions. It is seen that the model exhibits a
similar trend, converging to asymptotic RMSE values, which
are different by only a few (∼3) meters. As expected, the
heavier-tailed Laplace-distributed waveform results in more
frequent outliers, leading to inevitable degradation. Still, CNN-
DLOC exhibits considerable robustness to variations in s.

D. Robustness to Attenuation-Affecting Physical Variations

We next test the robustness to all {brℓ}. For this, consider
five different test sets, where in each test set we introduce
random perturbations to the calculated attenuation coefficients
computed by Bellhop according to the underlying physical
model. Specifically, we add a zero-mean uniform random
variable whose support is set as a fixed factor of the average
1
R

∑L
ℓ=1 |brℓ| for the ℓ-th receiver.5 For a more comprehensive

inspection that broadens the variety of considered scenarios,

5For example, a factor of 1/5 in our terminology is “20% perturbations”.
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Fig. 4: 3D Localization RMSE vs. SNR for CNN-DLOC with different levels
of perturbation in the attenuation coefficients {brℓ}.

we change some of the physical characteristics of the simu-
lated environment in the set Penv. In particular, we consider
a nonflat bathymetry with a small seamount, as illustrated in
Fig. 2a. The detailed parametric environmental description is
omitted due to the limited space. Apart from these changes,
the setting is identical to the one in Section IV-C, and the
source waveform is standard circular CN white noise.

As seen from Fig. 4, CNN-DLOC exhibits excellent ro-
bustness to variations of this physical aspect as well. These
results suggest that the architecture has the capacity to learn an
estimator that—on top of learning the environmental features
relevant for localization—similarly to the oracle LS estimator
(5), is oblivious to physical variations that lead to perturbations
in the attenuation coefficients {brℓ}.

E. Robustness to Data Compression Techniques

We now test CNN-DLOC against a more challenging input
statistical variation, and go beyond what can be expected from
the oracle LS estimator (5). Our goal now is to examine the
model’s OOD generalization to a different statistical deviation,
and specifically its behavior when applied to compressed
versions of the data. This scenario is relevant since the single-
sensor receivers are non-collocated, and therefore need to
transmit the data to a central processing unit. Given that under-
water acoustic channels typically support only low-bandwidth
communication [20], data compression becomes essential.

The simulation setting in this section is identical to that
in Section IV-C with a standard circular CN white noise
source waveform. However, we now generate the second-order
statistics input tensor (as illustrated in Fig. 1) after applying
the following compression methods to {xℓ}:

• Max-comp: Motivated by [21], we zero out all the sam-
ples in each signal xℓ except for the Kmax samples with
the maximal magnitudes. We evaluate the performance
with this compression method for Kmax ∈ {1, 3};

• Onebit: We apply the widely adopted one-bit per sample
quantization (e.g., [22], [23]) to the signals {xℓ}Lℓ=1; and

• All-but-one Onebit: The same as Onebit above, but
only for (L − 1) signals out of the L signals {xℓ}Lℓ=1.
This simulates the setting in which the central computing
unit is collocated with one of the receivers, and all the
other (L − 1) receivers must compress their data before
transmitting it to the central computing unit.
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Fig. 5: 3D Localization RMSE vs. SNR. Evidently, CNN-DLOC is (approx-
imately) oblivious to these forms of data compression methods.

Interestingly, and perhaps surprisingly, Fig. 5 shows that
the model, which was trained for uncompressed input data,
delivers almost the same performance for all four types of
compression, which are approximately the same performance
we obtain without compression. On one hand, this may
suggest that the model could be improved for uncompressed
signals.6 On the other hand, this result shows that the model
is highly robust to various types of quantization forms, which
is a desirable (nontrivial) property in itself for a localization
method. It follows, therefore, that the model is extracting the
most relevant features for localization, which are somewhat
preserved under these types of quantization methods.

We argue, without theoretical justification (in the present
work), that a primary contributing factor to the inherent
robustness of the solution is its specific input structure. In
particular, by preprocessing the raw data and feeding the
empirical auto- and cross-correlation functions of all the pairs
of sensors, we—in some sense—“Gaussianize” the input, from
a central limit theorem argument. Intuitively (and informally),
this “Gaussianizing transformation” takes different input distri-
butions (due to source waveform, perturbations in attenuation,
compression methods) and, on top of highlighting features like
time-difference-of-arrival, making them more similar to the
input distribution of the training data.

V. CONCLUDING REMARKS AND FUTURE WORK

This work investigates the robustness and OOD generaliza-
tion of the recently proposed DNN-based solution [11] for
UAL. Through various types of relevant deviations from the
input training distribution, we present a diverse simulation
study that demonstrates the robustness of a DNN trained for
UAL in complex environments. This further emphasizes the
potential integration of DNNs in future UAL systems.

While our results constitute an important milestone in the
development of data-driven UAL solutions, a plethora of yet
unexplored aspects await to be addressed. Among them are
natural extensions of this work, such as OOD generalization
to localization outside the volume V for which the model was
trained, perturbations in the bathymetry, sound speed profile
and surface geometry, along with an accompanying theory to
support the successful operation under these conditions.

6But this is not guaranteed: it is theoretically possible that a lossy compres-
sion optimized for distributed localization leads to negligible loss of accuracy.
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