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Abstract—Extended object tracking systems are becoming
more relevant for autonomous systems due to new innovative
sensor systems and the cost reduction of existing sensors. Data
from such sensors can be modelled as sets of spare asynchronous
spikes, opening the door to the use of Spiking Neural Networks
(SNNs). SNNs offer a more energy-efficient method of processing
data when compared to Artificial Neural Networks (ANNs). By
leveraging SNNs for extended object tracking, we illustrate in this
paper how to create fast and robust tracking systems capable of
directly processing data from multiple potential data sources.
We also show how to easily enhance tracking systems with
the ability to classify or estimate the sizes of objects. As an
example, we propose an SNN architecture capable of jointly
performing extended object detection, tracking and classification.
We compare our architecture to a state-of-the-art Poisson multi-
Bernoulli mixture (PMBM) tracker and discuss how SNNs can
be applied in a wider set of scenarios.

I. INTRODUCTION

With the decreasing cost and increasing adoption of fast
LiDAR systems for autonomous systems, there is still a critical
need for fast, low-complexity object tracking algorithms, and
in particular for extended objects. While long-range detection
technologies typically produce a single observation per ob-
ject/target, high-resolution LiDAR or millimetre-wave radars
for instance, can generate multiple returns from objects [1].
Similarly, neuromorphic cameras can be used to capture event-
like data that can in turn be used for object detection and
tracking [2]. In the context of detection and tracking, such
information can be used for object recognition/classification.
Beyond this, such systems can be used for mapping, navigation
or even vital sign monitoring.

In this paper, we investigate the problem of detection, recog-
nition and tracking of extended objects. Most current extended
object tracking algorithms operate in one of two modes. The
first set of methods split the detection and tracking problems
into two separate and subsequent problems. These methods are
particularly well adapted when the data quality is high and the
extraction of objects is relatively easy, e.g., based on measured
signal strengths or using architectures for object detection such
as YOLO [3]. Once estimated object positions are extracted,
they can be fed to single or multi-object trackers, that often
need to be able to handle misdetections and clutter. Although
complex trackers (see next paragraph) can be deployed, object
tracking in favourable scenarios can often be achieved using
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variants of the Kalman filter [4], using heuristic or simple
rules to speed-up the data allocation problem. One of the main
drawbacks of those methods is that the tracking performance
is highly dependent on the object extraction method and the
ability to limit clutter observations.

The second set of methods, solving jointly the detection and
tracking problems, is more suitable for challenging tracking
problems, e.g., when the clutter level is high, the signatures
of interest are weak. These methods are primarily Bayesian
trackers [4], in particular based on random finite sets e.g.,
the PMBM filter [5], and allow for principled uncertainty
management and quantification, from data uncertainties to
uncertainties about estimated tracks. While the latest Bayesian
filters have shown excellent detection and tracking capabilities,
they remain generally expensive computationally due to the
data allocation and track storing problem. Moreover, pure
model-based approaches can also be limited by the relative
simplicity of the clutter, observation and motion models. Re-
cently, data-driven approaches have been used within Bayesian
filters to learn motion and observation models [6], [7] but to
the best of our knowledge, not yet for extended object tracking.

Spiking neural networks (SNNs) appear as promising ar-
chitectures to address tracking problems, as they build on
the propagation of asynchronous events or spikes and mea-
surements from neuromorphic [8] and radar sensors can be
interpreted as event-like. SNNs can learn complex spatio-
temporal features and due to the binary (quantised) nature of
their signals, they can run rapidly on dedicated neuromorphic
hardware. A number of recent studies addressed object de-
tection using SNNs, e.g., [9]-[12]. However those methods
handle the object detection, classification and tracking tasks
separately.

In this work, we investigate a flexible SNN framework
capable of jointly detecting, tracking and classifying extended
object measurements from LiDAR and event camera-like
sensors. We build on the preliminary work by A. Abdulaziz
et al. [8] and extend it by enabling 2D tracking and object
classification. This is achieved by introducing different loss
functions to allow end-to-end supervised training of a single
network. Our investigation aims at assessing whether sim-
ple SNNs can perform similarly or better than model-based
Bayesian trackers. While the SNN considered here does not
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(yet) enable uncertainty quantification, it could in the future
using probabilistic SNNs and Bayesian learning [13]-[16]

The remainder of this paper is structured as follows: Sec-
tion II introduces the spiking neuron models considered and
describes the architecture used and associated training initial-
isation strategy. Section III discusses the tracking problem we
considered and compares the performance of the SNN-based
tracker to a state-of-the-art extended object tracking algorithm.
Section IV finally summarises the contributions of this work
and discusses future work.

II. SNN FOR JOINT DETECTION, CLASSIFICATION AND
TRACKING

A. Spiking neuron models

Although SNNs handle asynchronous events, such networks
discretise data over their temporal dimension. For any given
time ¢ a spiking neuron ¢ produces a binary output or spike
sit € {0,1}. In a layered architecture as considered here, each
neuron receives as input the signals emitted by neurons from
the previous layer and the links between neurons are referred
to as synapses. These neurons of the previous layer are referred
to as pre-synaptic neurons, whose set is denotes P;, for the
post-synaptic neuron ¢. The internal state of a spiking neuron
i at any given time ¢ is described by a so-called membrane
potential w;, [17]. Different models exist to describe the
dynamics of spiking neurons, including the Spike Response
Model (SRM) [18], the Hodkin-Huxley neuron model [19],
the Leaky Integrate-and-fire (LIF) neuron model and recurrent
spiking neuron model [17].

In this work, we employ two different neuron models,
the LIF neuron and the recurrent LIF [17]. The LIF model
mimics the behaviours found in RC circuits and the membrane
potential can be described as

Uit = Biui,t—l + E Wy,iSj,t — eisivt—l-
JjEP;

(D

The membrane potential consists of the weighted sum of the
input synapses and incorporates a leakage term analogous
to an RC circuit [9]. Here (3; represents the decay rate of
the membrane potential for the neuron 4, w;; denotes the
synaptic weight of the link between the pre-synaptic neuron
j to the post-synaptic neuron ¢. Both the decay rate [3; and
the synaptic weights w;; are learnable parameters of the
LIF neuron Model. When the membrane potential crosses
a trainable threshold value 6;, the LIF neuron “fires” and
generates a spike, i.e., s;; = 1. The neuron may also be
reset by subtracting 6; from the membrane potential ensuring
regulated spiking activity [20] (see last term in (1)). Without
this reset mechanism, the spiking neuron continues to fire until
membrane potential decreases below the threshold 6;.

The recurrent LIF neuron model operates similarly to the
LIF neuron with the addition of the output spikes of the
neuron being fed back in as input the neuron’s own input.
The recurrent LIF neuron can be expressed as

Ui p = Bilip—1 + E Wj i85t + Wisit—1 — 0:Sie—1, (2)
i€EP;

where the recurrent weight w; is an additional trainable

parameter.

B. Network Architecture
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Fig. 1. Diagram of the proposed SNN-based tracking system. Arrows of
different colours indicate the types of neural network layers, as shown in the
colour-coding in the legend.

The proposed architecture, depicted in Fig. 1 is tailored for
the task of detection, tracking and classification of clusters or
swarms of events. The training processing will be detailed in
Section II-C but we present here briefly the architecture and
associated training loss. The network consists of an encoder
(left) with two sets of Convolution -Max Pool — LIF blocks
and a tracking head with three separate sets of fully connected
output neurons. The first is a pair of non-spiking neurons
dedicated to determining the position of the cluster within the
field of view, the second group is a set of spiking neurons used
to determine the object class, and finally a single recurrent-
spiking neuron estimates the presence of an object within the
field of view. It is interesting to note that the pair of non-
spiking position neurons are connected to the output of the
first convolution layer via a non-spiking LIF layer, skipping
the Max Pool and second joined block. From preliminary
runs, we observed that this configuration is more efficient than
connecting to the output of the second convolution layer (for
the problem we considered). The input of the encoder can
be configured to have several input channels ¢, such as RGB
images or events from a neuromorphic camera, where events
are polarised.

For any given time ¢, the network loss function is expressed
as

£(t> = BCE (uouh,t Jt) + CFE (uoutz,t 7Ct)

+ 1) (lt — 1) MSE (uoutgyt apt) ) (3)

where 0(.) denotes the Kronecker delta function. The Binary
Cross-Entropy (BCE) loss is calculated between the spiking
outputs membrane potential us,¢, , and the actual binary
presence label [;. The Cross-Entropy (CE) loss is evaluated
between the spiking classification outputs membrane oy, ,
and the one-hot encoded target classification c; (assumed to be
the same over time for a given training sample/sequence). The
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last term in the loss computes the mean squared error (MSE)
between the ground truth and estimated object positions,
denoted p; and ey, ,, Tespectively. The delta function acts
as a mask and ensures that the MSE term is only included
when [; = 1, i.e. when the cluster is present in the scene. The
BCE and CE losses are constantly calculated at each time
t. The MSE loss quantifies the difference between the non-
spiking output membrane potential and the centroid position
of events.

C. Network description and training process

The network structure used is that described in the previous
Section II-B and Fig. 1. To accelerate the training process,
the 12 filters of the first convolutional layer are initialised
using Gabor filters [21], primarily used for texture and feature
extraction. They are also believed to approximate the response
of simple cells in the mammalian visual cortex [21] [22] to
oriented bars and from preliminary runs, we observed that they
help convergence with small training sets. This observation
is in line with previous work showing it can improve the
performance and accelerate the convergence of conventional
convolutional neural networks [23]. The 32 filters of the
second layer are initialised randomly.

The network input at each time step t consists of a matrix
of events of size 100 x 100, which corresponds to discretising
the spatial field-of-view into 1002 cells. Training of the SNN
employs back-propagation through time (BPTT) [24]. This
method works backwards from the final output of the network,
the gradient is propagated backwards through the network.
This way the computation of the gradients of the SNN closely
mirrors the method used for recurrent neural networks (RNNSs)
by iterative use of the chain rule. The thresholding of the
membrane potential results in a non-differentiable loss akin
to a Heaviside step function. To overcome the so-called “dead
neuron problem” and the non-differential nature of the spiking
functions, a surrogate gradient method is employed, whereby
the Heaviside step function is replaced with a continuous and
differentiable function during the backward pass (a sigmoid
function here). BPTT is run with a batch size of 48 as larger
batches did not have a significant effect on training speed or
model accuracy for our experiments. Adam [25] was selected
as optimiser and the learning rate was decreased from 0.5¢2
after 20 epochs, by 5% at the end of each epoch until the end
of the training (50 epochs in total).

III. EXPERIMENTS
A. Data Generation

To evaluate our model, synthetic data set was created, illus-
trating 2D gaussian-like objects appearing and disappearing
in the field of view (at most one object per sequence). Three
main scenarios have been investigated, departing only by the
expected number of observations per object at each time
stamp, ranging from 5 (hard scenario) to 50 (easy scenario).
Three sets of 10,080 samples each were created as part of the
training set and a further 144 samples were generated to test
and evaluate the model. These samples were created using

a linear constant velocity motion and measurement model
as detailed in [26]. This method of data generation favours
the tracker we have compared our model to. Each sample
consists of measurements spanning over 50 timesteps. Each
timestep contains an expected number of clutter measurements
defined by the clutter rate A.. The ”birth” timestep is randomly
generated to be in the first half of the sequence and the “death”
timestep in the second half of the time series. Upon reaching
the birth timestep a random starting point and velocity are
generated. For each subsequent timestep, the motion model
modifies the position of the object, until the ’death” timestep
is reached, where it is subsequently removed from the field of
view. The track generated by the motion model describes the
centroid of the extended object and is used as our ground truth
position, times of birth and death can be used to determine
presence during the sequence. The measurement model takes
each of these ground truth positions and generates a set
number of measurements within a Gaussian cluster around
the centroid, with covariance X, if the object belongs to class
r € {1,...,k}. For our dataset, the field of view was set to a
range of {—1000, 1000}, the clutter rate A\, = 5 and we used
k = 3 classes, which corresponds to three object sizes/shapes.
More precisely, we used for ¥, diagonal covariance variances
whose diagonals are {(502,502), (752,752), (502, 75%)}, re-
spectively.

B. Results

To measure the performance of the network the same data
used during the testing process was also passed through an
optimised extended target Poisson multi-Bernoulli mixture
(PMBM) tracker [27] [28]. The PMBM model was opti-
mised by cross-validation to ensure a reasonable trade off
between the Precision and False Positive Rate.To emulate
the classification abilities of the SNN we attempted to use
the provided extents of the PBMB tracker to assess if those
could be clustered for classification purposes. However, this
did not work due to a significant amount of noise in the
estimated extents. Conversely, the SNN does not directly
provide size or extent only a classification of group size.
As such classification performance has been omitted from
the results for the PBMB tracker, only presence and position
metrics can be provided. Nonetheless, the SNN tracker was
able to achieve a classification accuracy of 84.03% for the 5-
event dataset, 97.62% for the 10-event dataset and 100% for
the 50-event dataset.

Table I provides a quantitative comparison of the SNN
and PMBM trackers. These trackers have been evaluated on
True Positive Rate (TPR), False Positive Rate (FPR), accuracy,
precision, and F1 score for presence. For the position errors,
the MSE has been provided, alongside its 5th and 95th
quantiles. The PMBM tracker shows very high performance
across all metrics when a large number (50) measurements are
available for the target. The PMBM tracker presents a TPR
of 98.43%, a low FPR of 0.24%, an accuracy of 98.97%, a
precision of 99.71% and an F1 score of 99.05 %. However,
for the same data, the SNN-based tracker is able to marginally
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Detection Localisation
TPR FPR Acc. Prec. F1 MSE

5 events SNN 96.45% | 0.79% | 98.06% 99.05% 97.67% | 0.020 (0.0044, 0.7680)
PMBM | 93.71% | 0.13% | 97.18% 99.77% 96.48% | 0.014 (0.0002, 1.0000)

10 events SNN 97.38% | 1.19% | 98.29% 99.17% 98.22% | 0.013 (0.0022, 0.3755)
" | PMBM | 94.23% | 0.00% | 97.25% | 100.00% | 96.76% | 0.016 (0.0002, 1.0000)

50 events SNN 98.22% | 0.80% | 98.60% 99.25% 98.71% | 0.007 (0.0011, 0.2482)
PMBM | 98.43% | 0.24% | 98.97% 99.71% 99 .05% | 0.011 (0.0001, 0.6930)

TABLE T

COMPARATIVE PERFORMANCE METRICS OF THE SNN AND PMBM TRACKERS EVALUATED OVER A NUMBER OF EVENTS. METRICS ASSESSED INCLUDE
THE TRUE POSITIVE RATE (TPR), FALSE POSITIVE RATE (FPR), ACCURACY (ACC), PRECISION (PREC) AND F1 SCORE FOR DETECTION. MEAN
SQUARED ERROR (MSE) HAS BEEN PROVIDED WITH LOCALISATION ALONGSIDE (5TH/95TH) QUANTILES.

provide a more accurate track with an MSE of 0.007 compared
to the PMBMs MSE of 0.01. Considering the 5th and 95th
quantiles of the MSE helps differentiating the two methods. In
all instances, the 5th quantiles for the PMBM tracker are lower
than the SNN quantiles, but the 95th quantiles are larger. This
shows that whilst the SNN tracker may not perform locally
as favorably as a well-calibrated PMBM tracker it does not
lead to excessively larger positioning errors. The SNN-based
tracker is not significantly far behind and keeps within 1%
point of the PMBM tracker for all detection criteria (bottom
rows of Talbe I).

In the scenario where a small number of measurements (5)
is available for the target at each timestamp, the SNN becomes
more competitive. For the 5-measurement scenario, the SNN
tracker has a TPR of 96.45%, an FPR of 0.79%, an accuracy
of 98.06%, a precision of 99.05% an F1 score of 97.67% and
an MSE of 0.02. Whilst the SNN only outperforms the PBMB
in terms of TPR, accuracy and F1 score, it is not significantly
behind in the remaining metrics and remains again within 1%
point. This shows that the SNN tracker can perform similarly
if not better than the PMBM tracker where measurements are
limited for presence detection, and it is still able to classify
measurements with an 84.03% accuracy. We also again see
the same behaviour with the position estimation where the
SNN is more robust and does not rely on the calibration. This
better reflects real-world scenarios where a limited number of
measurements may be received amidst the clutter and noise of
the sensory data, and it may perform better with more complex
scenarios.

Fig. 2 shows a reconstruction of the position estimate of
the two trackers. Whilst the SNN-based position may appear
noisier at times these spikes in noise are also where the PMBM
tracker completely loses the object and is no longer able to
provide a position estimate demonstrating the more robust
nature of the SNN. The position estimate of the SNN tracker is
directly linked to the membrane potential of the output neuron,
this results in an oscillating behaviour as the pre-synaptic
neurons fire due to high local activity causing a jump in
membrane potential before the membrane can naturally decay
back and follow the movement of the target.

Finally, Fig. 3 shows another example of the position
estimation. Whilst both results are noisy and neither closely
tracks the measurement, the SNN-tracker can more closely
follow the general movements. Both the SNN and PMBM
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Fig. 2. Reconstructed position results from the PMBM tracker (Green) and the
SNN tracker (Red). Ground truth is shown in Blue. The top panel illustrates
the X-axis position estimation whilst the bottom illustrates the Y-axis position
estimation.
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Fig. 3. 2D view of the reconstruction results of the PMBM tracker (Green)
and the SNN tracker (Red). Ground truth is shown in Blue. Also shown is
the extent of the PMBM tracker.

tracker suffer from a poor initialisation, but the SNN can
respond more quickly and correct itself as the measurements
move down the through the field of view.

Quantitative comparison of the computational cost of the
two methods is challenging as it depends on the implemen-
tation adopted. Here, the SNN was trained and run using
a single NVIDIA A5000 (24GB) GPU. The full 50-epoch
training took 1.25 hours to complete - this increased by only
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15 minutes when training was performed on a consumer-grade
NVIDIA RTX 3080 (10GB) GPU. A single pass of the 144
elements test set took a little over 1.8 seconds irrespective of
the number of measurements in each sample or timestep. The
PMBM tracker was run on an AMD Ryzen 7 5800H CPU. The
time taken to run the PMBM tracker varied with the number
of measurements in each sample ranging from 0.4 seconds
up to 2.3 seconds. However, it is worth noting that the SNN
was implemented using the optimised snnTorch library [9],
whilst the PBMB tracker was adapted from code found in [27]
running in MATLAB and may not be fully optimised. Whilst
these results are not directly comparable, it does highlight the
better scaling of the SNN.

IV. CONCLUSION

In this paper, we presented a Spiking Neural Network
(SNN) based joint extended object tracking and classification
system. SNNs and compare their performance against a state-
of-the-art Poisson multi-Bernoulli mixture (PMBM) tracker.
The two tracking systems were compared using synthetic
datasets consisting of sequences of 50 timestamps with dif-
ferent detection levels. Overall, the SNN tracker provides
marginally better results when compared to the PMBM tracker
with an average presence accuracy of 98.31%. In contrast, the
PMBM tracker has an average presence accuracy of 97.80%.
PMBM provides better position MSEs that SNN, but its
position errors can be quite large. Whilst the SNN does not
significantly outperform the PMBM tracker, it demonstrated a
more robust response to a wide variety of input scenarios. This
behaviour makes it more suitable for use in more complex
scenarios where there may not be enough data or where
the ability to discriminate the object from non-visual data is
beneficial. Larger SNNs may be able to discriminate between
objects with more complex geometry as well as providing
tracking abilities where other trackers may struggle. Future
work should include the development of Bayesian inference
methods to train tracking SNNs as Bayesian networks, as they
would then be able to also provide uncertainties about the
network outputs.
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