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Abstract—When customers submit problem tickets to the
customer-service department, these requests are channeled into
standardized processing workflows. Ensuring real-time visibility
of progress updates and accurate estimation of anticipated
resolution timelines is critical for maintaining positive customer
experience. However, the complexity of manual processing time
estimation arises from multiple interdependent factors, including
ticket source, priority level, and incident classification. While part
of these information are available, the difficulty of accessing
others creates substantial discrepancies in handling durations
across different ticket categories, thereby compounding the
challenges of temporal prediction. Besides, full historical paths
of ticket transitions between departments are rarely available
during real-time prediction scenarios, where conventional single-
task approaches may suffer from overfitting. To address these
issues, we proposed a novel Multi Task Transformer-LSTM
model (MT-TLM) that can simultaneously optimize three tasks:
predicting subsequent service department routing, estimating
department-specific processing durations, and estimating total
resolution timelines. And our multi-task design has demonstrated
better generalizability and robustness compared to some classic
machine learning models, ensemble learning models, single-task,
and multi-task deep learning models.

Index Terms—ML(machine learning), Time series,
MTL(Multi-task learning), ticket processing.

I. INTRODUCTION

High-quality customer service is a key driver of company
performance [23]. Timely resolution of concerns boosts satis-
faction and retention. Effective service fosters loyalty and trust,
encouraging repeat customers and enhancing reputation and
profitability [18]. Similarly, in government and nonprofit set-
tings, efficiently handling community requests—like pothole
reports or legal advice—is vital for public trust. In corporate
support, predicting response times for requests, such as emails
[1], improves satisfaction and efficiency [20]. Optimizing
response times is thus crucial for customer satisfaction and
business success.

Our research scenario is the handling of complaint tickets on
a public service platform. For instance, a resident annoyed by
a neighbor’s noisy renovation outside working hours submits
a complaint via a community app after failing to resolve it
directly. Customer service transfers the ticket to a government
mediation center, then to the civil disputes department. As

Fig. 1. The process of handling customer requests, passing through multiple
departments (di).

mediation proceeds, various departments manage tasks like
contacting parties, investigating, and mediating until reso-
lution. We aim to predict the total processing time upon
receipt and give the resident an estimated resolution time,
updating it based on case progress (e.g., inaccurate reports)
and feedback (e.g., further mediation requests). Fig. 1 is a
sample of the ticket transfer process. For a detailed description
of the problem, see section III-A.

So far, some studies have used classical machine learning,
like Random Forest [2], Xgboost [5], and neural networks
such as LSTM [11] and Transformer [24], to predict ticket
processing times, proving their efficiency and feasibility. Yet,
when tickets involve multiple departments, transfers between
them add significant uncertainty to the total time.

Predictive Analytics (PA) uses current and historical data
to forecast future outcomes [13]. For our task, Transformer
models perform well in multi-output scenarios like speech
separation [21], multi-scale attention effectively captures com-
plex sequential features [16], and hybrid models, such as
VAE-LSTM, which combine LSTM with other modules, have
proven effective for time series tasks [14]. Inspired by Cao
et al. [3] and Liu et al. [15], we combine Transformer and
LSTM to model both long-range and short-range dependen-
cies, enhancing complex feature representation. Unlike single-
task models that overfit when predicting only time, our multi-
task framework improves generalization by sharing features
and leveraging task relationships [4].

In this paper, we design three loss functions. The entire
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model will predict three different tasks: 1) the next department,
2) the processing time of the next department, and 3) the
total processing time of the ticket. Additionally, we use a
Transformer-LSTM-based encoder to encode the transfer se-
quence, employing a self-attention layer to capture long-range
dependencies in the input features. Meanwhile, we analyzed
and cleaned real community data, and the experimental results
on this dataset demonstrate the advantages of our model.

The main contributions and innovations of the model are as
follows:

1) We combine the self-attention mechanism of Trans-
former [24] with the LSTM [11] network to effec-
tively capture long-range dependencies in department
sequences while retaining the advantages of LSTM in
time series modeling.

2) We employ three loss functions that mutually constrain
each other, using a multi-task learning (MTL) [4] strat-
egy with next department prediction and departmental
processing time prediction as auxiliary tasks. This multi-
task approach enhances the predictive performance of
each task.

3) We validated the effectiveness of this method using
community ticket data. Extensive experimental results
show that our structure significantly outperforms single-
task models and other common algorithms.

II. RELATED WORK

A. Time Prediction for Customer Service

In 2020, Borg et al. [1] used Random Forest [2] to analyze
51,682 customer support emails, demonstrating its ability to
predict response times and improve communication efficiency.
In 2022, Haw et al. [10] evaluated neural networks, AdaBoost
[9], and Random Forest [2] for predicting ticket resolution
times, showing their effectiveness in enhancing service effi-
ciency and customer satisfaction. While both studies highlight
the utility of machine learning in optimizing customer support,
neither addresses the prediction of ticket flow paths or multi-
departmental influences, which are central to our task.

B. Time Prediction for Traffic Trajectory Modeling

Transportation trajectory modeling [25] is highly relevant
to our task. Transportation trajectory modeling uses historical
trajectory data to analyze and predict movement patterns of
transportation modes like vehicles, pedestrians, and public
transit. By processing data from GPS and other sources,
extracting features such as speed and direction, and employing
machine learning techniques like RNNs [8], LSTMs [11], and
Graph Neural Networks, it aims to forecast future trajectories
and travel times.

Wang et al. [26] proposed MTNet, which decomposes tra-
jectories into map-matched road sequences with spatiotempo-
ral features, using meta-learning to predict trajectory patterns
accurately. Shao et al. [19] introduced TrajForesee, leveraging
sparse urban traffic data and fine-grained GPS information to
predict urban vehicle trajectories using spatiotemporal embed-
ding and dynamic graph convolution. These models predict

both the movement paths of traffic participants (e.g., vehicles
and pedestrians) and overall travel time, similar to our task.
However, department flow paths are concentrated on a few key
departments, unlike traffic road maps, and customer service
data differs significantly from traffic trajectory data.

C. LSTM-related and Transformer-related models

LSTM (Long Short-Term Memory network), an enhanced
version of RNN(Recurrent Neural Network), overcomes gradi-
ent vanishing and exploding issues in traditional RNNs when
handling long sequences. The classic LSTM has been proven
effective in time series prediction tasks, such as RSSI-based
indoor localization [6].

Transformer, a neural network architecture based entirely
on attention mechanisms, excels in capturing long-range de-
pendencies in data through self-attention, making it highly
effective for tasks involving extended sequences. Transformer
models have achieved success in multi-output scenarios such
as speech separation [21].

III. PROPOSED METHOD

A. Problem Formulation

Consider a company with N departments, denoted as di
where i ∈ {1, 2, . . . , N}. When a customer service request
(ticket) is received, it needs to be processed by a subset
of these departments. Let K be the number of departments
involved in processing a given ticket, with K ≤ N . The
sequence of departments through which the ticket passes is
denoted by

S = (di1 , di2 , . . . , diK ) (1)

where {i1, i2, . . . , iK} ⊆ {1, 2, . . . , N}.
The total processing time t is defined as the time elapsed

from when customer service receives the ticket to when the
final processing result is returned to the customer. In practical
applications, the total processing time t is used as a unified
metric instead of summing individual department times, as
discrepancies between predicted and actual sequences can
alter node counts, amplifying total processing time errors.
Therefore, instead of summing the processing time of each
department, we predict the total processing time t directly.

To improve the accuracy of ticket processing time prediction
and reduce the impact of sequence discrepancies, we propose
a multi-task learning model to predict the following tasks:

• The next department dnext in the sequence.
• The processing time td for the current department.
• The total processing time t for the ticket.

B. Overall Structure of the Framework

The entire model framework is shown in Fig. 2. Our model
uses a multi-task learning approach to predict ticket depart-
ment sequences and processing times. It takes department
sequence data, along with temporal and categorical features, as
input. The model simultaneously predicts the next department,
its processing time, and the total processing time. By combin-
ing self-attention, dual-layer LSTM, and cyclic encoding, it
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Fig. 2. Schematic of multi-task Transformer-LSTM model architecture.

captures temporal and sequential patterns, improving accuracy
within a unified framework.

The model begins with an embedding layer converting
department indices into high-dimensional vectors, followed
by self-attention to improve feature representation. A residual
connection refines features while retaining input data. A dual-
layer LSTM captures sequence dependencies, and cyclic en-
coding handles temporal periodicity. Categorical features use
one-hot encoding. Combined features pass through a shared
ReLU-activated hidden layer, with task-specific outputs: soft-
max for node prediction and regression for time prediction,
enhancing performance by leveraging shared patterns.

C. LSTM-Transformer Encoder

Our LSTM-Transformer structure is shown in Fig. 2, where
the area labeled ”LSTM-Transformer” represents the encoder.

The embedding layer converts node indices into fixed-
dimensional vectors to capture semantic information. A multi-
head self-attention layer then processes these vectors to detect
long-range dependencies, improving feature representation. A
residual connection and layer normalization stabilize training
by combining the attention output with the original embed-
ding. Next, a dual-layer LSTM extracts sequence patterns:
the first layer captures basic features across all time steps,
followed by Dropout to prevent overfitting, and the second
layer focuses on global temporal patterns from the last time
step, also with Dropout for regularization.

This structure processes input sequentially through embed-
ding, self-attention, and LSTM, integrating node semantics,
global dependencies, and temporal dynamics. The resulting
features support classification or prediction tasks, enhancing
the model’s ability to handle complex time series by extracting
multi-dimensional node features effectively.

D. Multi-Task Loss Function Design

In MT-TLM, the multi-task loss function integrates three
task-specific losses: department prediction, processing time
prediction, and total time prediction. These are defined as
follows:

• Department Prediction Loss:

Fig. 3. Distribution of ticket transfer counts and total processing times.

Ldepartment output = −
∑M

i=1

∑C
j=1 cij log (ĉij), a cross-

entropy loss over M samples and C classes, where cij
is the true label and ĉij is the predicted probability for
sample i and class j.

• Processing Time Loss:
Ltime output = 1

M

∑M
i=1

(
td,i − t̂d,i

)2
, the mean squared

error (MSE) between true (td,i) and predicted (t̂d,i)
processing times for the current department across M .

• Total Time Loss:
Ltotal time output =

1
M

∑M
i=1

(
ti − t̂i

)2
, the MSE between

true (ti) and predicted (t̂i) total processing times over M .
The combined loss is:

Ltotal = w1Ldepartment output + w2Ltime output + w3Ltotal time output (2)

In this formulation, the weights w1, w2, and w3 correspond
to the department output, processing time output, and total
time output losses, respectively. Given the primary importance
of total time prediction, we assign w3 = 0.5 to prioritize
it. The department and processing time predictions, which
are equally significant and interdependent, are each assigned
weights of w1 = 0.25 and w2 = 0.25. Cross-validation
experiments validate that this weighting scheme (w1 = 0.25,
w2 = 0.25, w3 = 0.5) achieves an optimal balance of
performance across all tasks.

IV. EXPERIMENT RESULTS AND ANALYSIS

A. Data Analysis

The dataset includes about 92,000 customer demand records
from Shenzhen neighborhoods (July 2022–October 2024),
tracking requests from submission to resolution. After remov-
ing unprocessed or misrouted entries, 88,000 valid records
remain. Most tickets need 3–5 transfers, with cases over 16
transfers excluded. Data is split 8:1:1 into training, validation,
and test sets (random seed 5140). It features 9 categorical
variables (e.g., community, event source) encoded with one-hot
or target methods, and 3 cyclic temporal features (hour, month,
weekday). Processing times typically range from 0–400 hours,
with outliers above 500 hours affecting averages and challeng-
ing the model.

Fig. 3 shows ticket transfer counts and processing times.
Most tickets need 3–5 transfers, with those over 16 deemed
invalid and removed. Processing times are typically 0–400
hours, but outliers above 500 or 1,000 hours, though rare,
raise the average and challenge the model.
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Model
Multi-task Single-task

Node Prediction Time Prediction Node Prediction Time Prediction

Acc RMSE / MAE Acc RMSE / MAE

SVR / / / 383.22 / 318.49
Kalman Filter / / / 206.17 / 127.62
Gaussian Process / / / 194.24 / 96.86
Random Forest / / / 187.57 / 104.82
CatBoost / / / 141.08 / 73.90
LightGBM / / / 134.07 / 70.44
XGBoost / / / 133.66 / 70.96
Transformer 85.28% 142.88 / 72.37 83.47% 150.07 / 75.22
Seq2Seq-LSTM 86.66% 135.22 / 78.04 86.53% 142.57 / 80.42
LSTM 86.47% 131.39 / 73.43 86.13% 138.71 / 78.95
MT-TLM (WD) 84.66% 138.03 / 77.25 83.30% 132.98 /72.19
MT-TLM(Ours) 87.04% 125.82 / 66.16 86.35% 133.98 / 69.47

TABLE I
COMPARISON OF MODEL PERFORMANCE IN MULTI-TASK AND

SINGLE-TASK SETTINGS, SHOWING ACCURACY (ACC) AND ERROR
METRICS (RMSE/MAE) FOR NODE AND TIME PREDICTION TASKS.

B. Preprocessing and Experiment Setup

We evaluated department prediction accuracy and total pro-
cessing time RMSE separately on a machine with 32GB RAM,
an i5-13600KF CPU, and a 4070s GPU. To simulate real-
world prediction without full node sequences, we augmented
data by creating multiple versions of each record (1 to n
nodes for an n-node sequence), expanding the training and
test sets to about 470,000 and 59,000 records, respectively.
Community distribution of the original dataset is in Tab. II.
Model performance (Accuracy, RMSE, MAE) for multi-task
and single-task settings is in Tab. I. Parameters included:
embedding dimension 512, hidden units 512, learning rate
0.0001, dropout 0.2, and 48 attention heads.

C. Result

We tested three classic machine learning models—SVR
(Support Vector Regression), KF (Kalman Filter), GP (Gaus-
sian Process), four ensemble models—Random Forest [2],
CatBoost [17], LightGBM [12] and XGBoost [5]—and five
deep learning models, including Transformer [24], Seq2Seq-
LSTM [22], and LSTM [11]. Seq2Seq models, like those used
in Transformer-based speech recognition [7], are common in
time series tasks. We also evaluated two multi-task models:
MT-TLM and MT-TLM (WD). All multi-task models had
an extra ReLU-activated fully connected layer, except MT-
TLM (WD), which omitted the shared Dense layer. Total
processing time was assessed on a larger original test set, while
accuracy used an augmented set. In real scenarios, customer
requests submitted via an app or mini-program are manually
assigned to various initial departments by dispatchers based on
input information and submission channels, with subsequent
departments unknown. To simulate this, we emptied the node
sequences in all test sets, allowing the model to predict the
total processing time without prior node information.

Vertically, ensemble learning models and classic machine
learning models struggle with our data, and Transformer un-
derperforms compared to LSTM-based models, which achieve
86% node prediction accuracy for time series.

Horizontally, deep learning models excel in multi-task set-
tings, except MT-TLM (WD), where multi-task metrics lag

behind single-task ones. Multi-task learning reuses knowledge
and cuts labeling costs, while multi-objective optimization
boosts performance over simple weighting or single-task train-
ing.

Community Name Test Set Training Set

Data Count Percentage (%) Data Count Percentage (%)

Shuijing 2409 34.90 19244 34.87
Sanlian 1162 16.83 9430 17.09
Lihu 1096 15.88 8969 16.25
Cuihu 893 12.94 7048 12.77
Gankeng 770 11.15 5844 10.59
Guanghua 362 5.24 2882 5.22
Others(62 Communities) 211 3.06 1774 3.21
Sum 6903 100.00 48191 100.00

TABLE II
DATA COUNT AND PERCENTAGE FOR EACH COMMUNITY IN TEST AND

TRAINING SETS

D. Discussion on Regional Results

This discussion assesses the model’s adaptability and per-
formance with uneven community data distribution. By com-
paring its performance in communities with more and less
data, we identify limitations and guide future improvements.
This enhances the model’s generalization, accuracy, stability,
and reliability with imbalanced data in real-world use. The
original data spans 68 communities but is unevenly distributed
(Tab. II). Six communities exceed 5% of the data, while 62
have less than 2%. We exclude small-sample communities and
focus on generalizability and scalability in the top 6 datasets.

Community Quantity Proportion RMSE MAE

Shuijing 2409 30.88% 123.94 58.71

Sanlian 1162 14.90% 97.17 55.11

Lihu 1096 14.05% 74.20 43.27

Cuihu 893 11.45% 141.16 64.08

Gankeng 770 9.87% 160.62 87.01

Guanghua 362 4.64% 141.78 84.47

TABLE III
METRICS FOR DIFFERENT COMMUNITIES.

Model Adaptability Across Communities We grouped
MT-TLM results from Tab. I by community (Tab. III).
Shuijing, the largest, aligns with overall results. The model
performs better in data-rich communities (Sanlian, Lihua) but
average in data-poor ones (Cuihu, Gankeng, Guanghua). More
data boosts accuracy; less data limits it, showing varied data
traits across communities in one city.

Future work could improve low-data community predictions
with more sampling or augmentation.

Model Adaptability with Partial Node Sequence Fig. 4
shows the link between node length and data quantity. We
tested metrics for node sequences of 9 to 16, from just
ticket features to full department sequences. As known nodes
increase, RMSE drops and the accuracy increases, showing
the key role of context in the prediction of the sequence.
More initial nodes help the model capture patterns, boosting
accuracy across sequence lengths.
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Fig. 4. The chart shows the variation in RMSE values with increasing prefix
length for different sequence lengths (from 9 to 16). Each line represents data
for a different sequence length, with colors distinguishing the curves for each
sequence length.

Lower RMSE with more nodes highlights improved perfor-
mance with more data, vital for real-world cases with partial
info. In our request-handling case, early-stage insights enhance
later predictions, aiding decisions and resource use.

V. CONCLUSION

MT-TLM merges LSTM, Transformer, and self-attention in
a multi-task framework with three inter-constrained losses,
improving real-time ticket flow prediction. Our study shows it
excels in predicting appeal processing times, aiding businesses
in boosting user experience, retention, and internal optimiza-
tion.

Future research should tackle data imbalance with augmen-
tation or synthetic data to boost model generalization across
communities. Exploring tailored multi-task architectures, like
attention- or graph-based models, could improve handling of
complex department dependencies.

We hope the MT-TLM model excels in both experiments
and real-world applications, inspiring further research and
industry innovation in multi-task learning for customer service
optimization.
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