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Abstract—EchoMotion revolutionizes exercise monitoring with
its innovative acoustic-based smart speaker system, designed to
perform human pose estimation using inaudible acoustic signals.
Leveraging a combination of acoustic features, deep learning
techniques, and a custom loss function, the system transforms
acoustic reflections from the human body into precise 3D pose es-
timations. Ground truth data were recorded using the Microsoft
Azure Kinect DK, a depth-sensing camera used for evaluation.
Data were collected from 22 participants performing five fast-
movement cardio exercises in both home and lab environments,
yielding over 11 hours of synchronized acoustic and ground truth
data. EchoMotion achieved a low Mean Absolute Error (MAE)
of 0.59 mm, demonstrating superior accuracy for fast movement
exercises compared to the reported MAE range of 2.8 mm to
96 mm in SOTA works, which also focus on slow movements.
Our system is non-invasive, cost-effective, respects privacy, and
is capable of performing in various acoustic conditions, making it
an ideal tool for home-based exercise monitoring and feedback.
EchoMotion’s ability to analyze the exercise pose estimations
provides valuable insights for users, trainers, and clinicians,
enhancing the quality of remote exercise programs.

Index Terms—Acoustic sensing, pose estimation, and home-
based monitoring.

I. INTRODUCTION

Cardiovascular diseases and other health-related conditions
are a major concern worldwide [1]. Exercise plays a critical
role in maintaining health and reducing the risk of these
conditions [2]. However, there is a significant gap in the
feedback personal trainers and clinicians receive from patients
or individuals performing cardio exercises at home. Current
feedback systems include live video streams of exercises
(impacting privacy), providing images of the exercises, or re-
quiring individuals to manually enter information into a diary
for review by an expert. Additionally, the general healthcare
cost for countries such as the United States has escalated
to approximately $3 trillion per year [3]. Remote exercise
monitoring has the potential to bridge these gaps due to the low
cost of current technology and its ease of use. Thus, developing
accessible and remote home-based solutions is crucial.

We developed EchoMotion to address the aforementioned
limitations. Our system analyzes the reflections of active
acoustic signals from the human body in motion, converting
these signals into a human pose estimation, as illustrated in
Figure 1. This approach significantly advances the integration
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of technology within healthcare and general fitness, offering
a novel method for analyzing exercise in remote monitoring
sessions. It enables the analysis of critical aspects of cardio
exercises, such as form, and other aspects, such as duration and
repetition. Our system successfully performed detailed motion
tracking for five exercises with 22 participants. In addition,
we conducted studies into the impact of distances, noise, and
cross-subject training to test the robustness of the system.

While vision-based systems like Kinect offer robust pose
tracking, they suffer from privacy concerns, sensitivity to
lighting, and high hardware requirements. Similarly, RF and
WiFi-based systems often require complex signal processing
and custom hardware. In contrast, EchoMotion provides a cost-
effective, privacy-preserving alternative using readily available
microphones and inaudible acoustic signals, making it ideal for
home-based monitoring.

EchoMotion’s contributions can be summarized as follows:

o« EchoMotion introduces the first non-invasive, acoustic-
based smart speaker system designed to enhance the
analysis of cardio exercises. By utilizing deep learning
techniques, it accurately interprets acoustic signals to
generate precise human pose estimations. The system
also offers a cost-effective solution by leveraging readily
available sensors such as microphones and speakers.

o A comprehensive acoustic dataset was collected from
22 individuals performing five cardiovascular exercises.
Each session, including repetitions and rest periods, lasted
6 minutes per exercise. This dataset contains approxi-
mately 11 hours of data and 880,000 frames of exercises.

« EchoMotion achieved a low average Mean Absolute Error
(MAE) of 0.59 mm, significantly lower than the MAE
range of 2.8 mm to 96 mm reported in the literature.
This was accomplished through a novel combination of
acoustic features and a custom loss function, underscoring
our technical contribution. Exercises were conducted at
a distance of 1 meter under normal room acoustic con-
ditions (40 dB). Additionally, our system demonstrates
adaptability to various environments (home and lab) and
conditions (1 m and 2 m), as well as different noise levels
(60 dB and 80 dB), while maintaining high accuracy.
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Fig. 1. EchoMotion: One Frame of High Knee Exercise

II. RELATED WORKS

This paper focuses on cardio exercises due to their ease
for home-based workouts. Current methods for human motion
sensing in terms of exercise or pose estimation are either, (1)
Wearable, (2) Vision, (3) RE/WiFi, or (4) Acoustics.

(1) Sensor-Based Monitoring: Traditional monitoring
methods in cardio exercises typically involve wearable sensors
such as Inertial Measurement Units (IMUs) [4], [5] and
Surface Electromyography (SEMG) [6]. While effective, these
technologies can be intrusive or inconvenient. (2) Vision-
Based Monitoring: Recent advances in computer vision have
led to the use of systems like Kinect for exercise monitoring.
[7]1-[10]. However, despite the Kinect’s robustness, it faces
challenges such as a limited sensor range, the need for optimal
lighting conditions, and privacy concerns [11]. (3) RF and
WiFi-Based Monitoring: Radio Frequency (RF) and WiFi-
based human motion sensing present privacy-conscious solu-
tions that are not affected by light or temperature variations.
Technologies like EMAS [12] GoPose [13] and MoRe-Fi
[14] highlight the capabilities of these approaches, but often
require specialized devices. (4) Acoustics-Based Monitor-
ing: To the best of our knowledge, EchoMotion is the first
method of cardio exercise form analysis utilizing acoustics.
Current methodologies incorporating acoustics include Hear-
Your-Action paper [15], HearFit [16], PoseSonic [17], and
LoEar [18], each has their own limitations. For instance, Hear-
Your-Action focuses solely on the classification of movement
types. Additionally, the limited dataset’s small size and lack
of diversity restrict the model’s ability to generalize across
broader, real-world scenarios. while PoseSonic, a wearable
smart glasses-based acoustic system, is limited to upper body
detection. Hearfit, on the other hand, lacks capabilities in
human posture detection and form analysis, primarily focusing
on exercise classification.

A study by Shibata et al. [19] investigates the use of
audible acoustic chirp signals for human pose estimation.
However, their approach encounters limitations due to the
reliance on loud, audible-range frequencies, which are imprac-
tical in real-world settings. Additionally, their method requires
an expensive ambisonic microphone (priced at $1,299) and
high-performance computing to support their large models,
potentially making it inaccessible to the general public. More-
over, they present only abstract conceptualizations of the
technology without offering practical applications. In contrast,
EchoMotion achieves superior human posture estimation using
readily available hardware, similar to commercial smart speak-

ers, which makes it cost-effective. Furthermore, by utilizing
inaudible acoustic signals and an efficient model for human
pose estimation, EchoMotion reduces the need for high-
performance computing.

III. METHODOLOGY

1) Data Collection and Recording Setup: Since there are no
existing datasets for cardio exercise at home using acoustics,
we collected a new dataset. Data was collected from 22
participants (16 males, 6 females), aged 18-44, representing
seven ethnic backgrounds, with heights ranging from 164 to
187 cm, weights from 50 to 95 kg, and Body Mass Indexes
(BMlIs) from 18.3 to 32.4. The majority of participants wore
standard sports attire, while a few opted for slightly loose
clothing. The data was captured in: (a) a living room (6.62 X
3.6 m) for 13 subjects (Figure 3), and (b) a laboratory (6 x 2.7
m) for 9 subjects (Figure 5). In consultation with a personal
trainer and medical professionals, we selected exercises, Air
Punches, Seated Leg Extensions, Jumping Jacks, Squats, and
High Knees, to evaluate EchoMotion’s performance in typical
cardio routines [20]. These exercises target various regions
of the body, including the upper/lower body, seated/standing
positions, and large motion movements, demonstrating that our
system is capable of adapting to a wide range of exercises.

The recording setup involved the MiniDSP UMA-8 USB
microphone array V2.0 with 7 microphones to record acoustic
signals, a Bose Companion 2 speaker for tone generation,
and the Azure Kinect DK for collecting ground truth 3D
pose data [21]. The reason for selecting the Kinect over
more expensive options (e.g., the $12k OptiTrack Mocap)
was its affordability, availability, and prior successful appli-
cations [13]. Ground truth data consisted of the X, Y, and
Z coordinates of 13 key body joints, including the pelvis,
shoulders, elbows, wrists, hips, knees, and ankles. Ultrasonic
tones, generated at frequencies ranging from 17k to 21k
Hz, were recorded at a 44.1 kHz sample rate with 1024
frames per audio buffer. These continuous tones enabled action
recognition by capturing reflections from human movements
while minimizing interference from environmental noise. To
evaluate the system’s robustness, we introduced background
music during select recording sessions using a secondary
speaker positioned 1 meter behind the participant. The same
exercises were then repeated while music was played at
controlled noise levels of 60 dB and 80 dB, calibrated using a
sound level meter to simulate realistic home environments. The
signals were recorded and stored in WAV format for further
analysis. Figure 6 illustrates the acoustic signal processing
pipeline. Each recording session captured five exercises, last-
ing approximately 6 minutes each, with 30 seconds of rest
between sets. We recorded around 11 hours of data, yielding
approximately 880,000 frames. Ethics approval was obtained
for our study from the University of Southampton Ethics
and Research Governance Committee under reference number
80815 (ERGO II). The dataset and code are publicly available
at https://github.com/MohammedMosuily/EchoMotion.
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Fig. 2. List of Exercises (Jumping Jacks, Squat, High Knee, Air Punch, Leg
Extensions)
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Fig. 4. Hardware setup:
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speaker positions.

Fig. 3. Data Collection in the living room

2) Feature Extraction and Model Architecture: For fea-
ture extraction, we employed two key methods the Mel-
spectrogram [19] and spectral contrast. First, the Mel-
spectrogram converts the short-time Fourier transform (STFT)
of the signal into a Mel-scaled representation, which reflects
how humans perceive sound frequencies, even for ultrasonic
signals. It is computed as follows:

K
Mel-Spectrogram( f,¢) = log (Z |X(k,t)|2Hm(k)> ()
k=0

where X (k,t) represents the magnitude of the STFT at
frequency bin & and time ¢, and H,, (k) is the Mel-filter bank
applied to the magnitude. The Mel-spectrogram emphasizes
frequency bands that are relevant for capturing changes in
human movement from the reflected ultrasound signals. Sec-
ond, spectral contrast measures the difference in amplitude
between peaks (high-energy components) and valleys (low-
energy components) in the frequency spectrum. This helps
distinguish between various human actions based on the struc-
ture of the reflected ultrasound waves. The spectral contrast
for each frequency band at time ¢ is computed as:

Exercise Exercise
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Smart 4 o
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Fig. 5. Data Collection Setup in the lab

max 1 X (k,t
Spectral Contrast(t) = log ( kelfim fuia) X ( )> ()
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where X (k,t) is the magnitude of the STFT at frequency
bin k and time ¢, and [fiow, fnign] denotes the frequency range
of interest for each band. This log-scaled ratio of peak to valley
magnitude provides insight into the tonal characteristics of the
sound across different frequency ranges. By combining both
these features, we obtained features that capture both the time-
varying and frequency-varying characteristics of the signals,
which were used as inputs to the deep learning model.

3) Training Procedure and Optimization: For this study,
we employed a sequential neural network model to predict 3D
pose data based on the extracted audio features. The sequential
model consisted of 5 dense layers with batch normalization
and dropout layers to prevent overfitting. The final layer of
the model produced the 3D coordinates of human joints using
a linear activation function. The custom loss function was
designed to minimize prediction errors for key joints such as
the elbows and wrists, which are critical for accurate pose
estimation. This loss function is based on mean squared error
(MSE) with additional weighting applied to specific joint
coordinates, and is defined as:

3

L(yi, 9:) = MSE(y;, 9;) x Weighted Joint Loss(y;,9:) (3)
where:
1 n
Weighted Joint Loss(y;, §;) = — Z @)

Where y; is the actual value of the observation (Kinect), and g;
is the predicted value (EchoMotion) for the same observation,
across all measurements.

This ensures the model focuses more on key joints dur-
ing training, improving the overall pose prediction accuracy.
Moreover, the dataset was split into training and testing sets
using an 80/20 ratio, and both the input features and target
labels were normalized. We trained the model using a batch
size of 64 for up to 100 epochs with the Adam optimizer,
starting with a learning rate of 0.001, and used an RTX 3070
GPU. Early stopping was employed to halt training when no
validation loss improvement was detected for 10 epochs.

IV. EXPERIMENTS AND RESULTS

To evaluate the accuracy of our methodology, we employ
Equation 5 to calculate the Mean Absolute Error (MAE) for
both single-subject and cross-subject analysis in pose estima-
tion between EchoMotion (Acoustics) and Kinect (Camera-
Based), measured in millimetre (mm) and we used Equation 6
for the Root Mean Squared Error (RMSE). The ideal value for
MAE and RMSE should be zero. In addition, Figures 7 and
8 show that varying noise levels (40 dB, 60 dB, 80 dB) and
participant distances (1 m, 2 m) do not affect EchoMotion, as
the MAE remains steady at 0.6 mm across five participants.
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Where y; is the actual value of the observation (Kinect),
and g; is the predicted value (EchoMotion) for the same
observation, across all measurements.

1) Single Subject Human Pose Estimation: The exercises
were recorded at a distance of 1 meter under normal room
acoustics (40 dB). Table I summarizes the performance for five
exercises: Air Punch (AP), High Knees (HK), Jumping Jacks
(1)), Leg Extensions (LE), and Squats (SQ). In the living room,
Leg Extensions (LE) achieved the lowest MAE of 0.551 mm,
while Jumping Jacks (JJ) and High Knees (HK) had slightly
higher MAEs of 0.582 mm and 0.622 mm, respectively. In
the lab, LE again had the lowest MAE at 0.506 mm, with
the other exercises showing MAEs between 0.598 mm and
0.625 mm. The RMSE ranged between 0.785 mm and 0.908
mm, demonstrating consistent accuracy across exercises and
environments.

2) Cross-Subject Human Pose Estimation: We utilized
Equations (5) and (6) to evaluate our results in cross-subject
training. To accommodate differences in body dimensions

TABLE I
POSE ESTIMATION RESULTS FOR MAE AND RMSE IN MM, ACROSS
LIVING ROOM AND LAB SETTINGS.

Living Room for subjects (1-13)
Statistic Exercise
LE JJ HK AP SQ
W(MAE) 0.551 | 0.582 | 0.622 | 0.603 | 0.620
02(MAE) 0.002 | 0.005 | 0.003 | 0.005 | 0.009
W(RMSE) 0.810 | 0.890 | 0.896 | 0.871 | 0.895
oZ(RMSE) | 0.002 | 0.004 | 0.002 | 0.004 | 0.006
Lab for subjects (14-22)
1w(MAE) 0.506 | 0.598 | 0.622 | 0.625 | 0.618
o2(MAE) 0.001 | 0.001 | 0.005 | 0.003 | 0.005
W(RMSE) 0.785 | 0.908 | 0.903 | 0.878 | 0.908
o2(RMSE) | 0.002 | 0.002 | 0.002 | 0.003 | 0.002

between subjects, we fine-tuned our model. Using a leave-
one-out approach, we trained on all subjects except one, using
the remaining subject for testing. Table II presents the results:
MAE values ranged from 0.612 mm to 1.280 mm across
various exercises in the living room environment, with the
lowest MAE for High Knees (HK) at 0.612 mm and the highest
for Leg Extensions (LE) at 1.280 mm. In the lab environment,
MAE values ranged from 0.911 mm to 2.717 mm, with the
lowest error for High Knees (HK) and the highest for Air
Punch (AP). The RMSE values ranged from 0.787 mm to
1.696 mm in the living room, and from 1.242 mm to 3.200
mm in the lab. The higher errors in the lab environment reflect
greater variations in body types, clothing, and environmental
factors between subjects.

TABLE 11
RESULTS OF POSE ESTIMATION FOR CROSS-SUBJECTS, MAE AND RMSE.
Exercise Living Room Lab
MAE (mm) | RMSE (mm) | MAE (mm) | RMSE (mm)
JJ 1.067 1.354 1.378 1.968
HK 0.612 0.787 0.911 1.242
AP 0.894 1.138 2.717 3.200
SQ 1.060 1.296 1.036 1.437
LE 1.280 1.696 1.133 1.573

3) Comparison to Existing Systems: Existing work on pose
estimation is shown in Table III. EchoMotion achieves a lower
MAE with a higher number of participants for single-subject
pose estimation across all exercises compared to other baseline
systems utilizing different modalities. While the comparison is
not entirely fair due to differences in participant numbers and
exercise types, it still provides an indication of EchoMotion’s
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performance relative to existing systems. The closest work
to ours is by Shibata et al. [19], which achieved the lowest
reported MAE of 2.8 mm. However, their system relied on
expensive microphones, a MoCap suit, and an audible low-
frequency chirp signal, making it difficult to directly compare
with our system. In contrast, EchoMotion uses inaudible tones
in the 17kHz-21kHz range for human pose estimation, making
it a novel and more practical approach using acoustics. To the
best of our knowledge, no existing work utilizes this frequency
range for predicting human pose estimation, and EchoMotion’s
performance with an MAE of 0.59 mm demonstrates compet-
itive accuracy at fast body movement.

TABLE III
COMPARISON OF ECHOMOTION WITH REPORTED PERFORMANCE AND
SENSING TECHNIQUES FOR POSE ESTIMATION BY MOVEMENT SPEED

Method Modality | Subjects | MAE (mm) Speed

GoPose [13] RFE/Wifi 10 47 Medium
BodyTrak [10] RGB 12 69 Slow
PoseSonic [17] Audio 22 61 Slow
Shibata et al. [19] Audio 8 2.8 Slow
(Ours) Acoustics 22 0.59 Fast

V. CONCLUSION

In conclusion, EchoMotion marks a significant advancement
in acoustic-based human pose estimation, introducing a non-
invasive smart speaker system that leverages acoustics and
deep learning for precise exercise analysis. We achieved a
low error for human pose estimation using our custom loss
function, with an overall performance of MAE 0.59 mm
compared to the reported MAE of 2.8 mm to 96 mm in other
systems. EchoMotion’s adaptability to various environments,
including both living room and lab settings, highlights its
potential for widespread application in home-based exercise
monitoring. The system’s ability to provide feedback and adapt
exercises to individual needs can significantly enhance the
quality of life for users. Future work includes refining the
predicted pose estimation frames.
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