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Abstract—Synthetic aperture radar interferometry (InSAR)
enables high-precision ground deformation detection by mea-
suring phase differences between SAR images. However, the
challenging phase unwrapping is required to resolve inherent
ambiguities. Disturbances like spatio-temporal decorrelation, at-
mospheric artifacts and multipath interference introduce noise,
leading to unwrapping errors that affect ground motion esti-
mation accuracy. In order to correct InNSAR phase unwrapping
errors made by traditional phase unwrapping methods, we pro-
pose utilizing an untrained deep neural network combined with
early stopping during the learning process to more effectively
capture the spatio-temporal priors of InSAR time series. Our
model is untrained, meaning that it is learned only on the noisy
wrapped InSAR data to be processed, without requiring any
additional training data. Experimental results show that our
method achieves competitive results compared to the European
Ground Motion Service (EGMS) product and the reference
methods.

Index Terms—Untrained neural networks, InSAR, Phase Un-
wrapping, Time Series.

I. INTRODUCTION AND RELATED WORKS

By computing and analyzing interferograms that represent
phase differences between Synthetic Aperture Radar (SAR)
images of the same area taken at different times, techniques
of Synthetic Aperture Radar Interferometry (InSAR) enable to
reveal the evolution of ground deformation with high preci-
sion. However, several disturbance factors as spatio-temporal
decorrelation and atmospheric artifacts can introduce noise,
complicating 2D Phase Unwrapping (2DPU) and posing a
significant challenge for InSAR applications. Indeed, with
this acquisition noise, most of the traditional 2DPU methods
tend to fail, either spatially, where strong phase variations
between nearby pixels violate Itoh’s condition (requiring phase
differences to not exceed 7 [1]), or temporally, causing abrupt
phase jumps in InSAR time series.

2DPU methods can be classified into three main categories
[2]: path-following-based methods [3], [4], optimization-based
methods [5] and those incorporating denoising process [6].
With the rapid advancement of deep learning, data-driven
phase unwrapping methods have also been proposed. Among
them, [7] estimates the phase discontinuities and applies them
as cost functions for the minimum cost flow (MCF) solver of
the method SNAPHU [18] to unwrap SAR interferograms. The
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works in [8], [9] treat InSAR phase unwrapping as semantic
segmentation problems. However, most of these learning-based
methods necessitate substantial amounts of training data.

Inspired by the concept of deep image prior [10], un-
trained neural networks [14], [16], [17] have been designed
to solve image and video inverse problems, frame prediction
and compression. Particularly, this approach has been used
for phase unwrapping on biological data [11] that are not
easy to acquire in large quantities and on InSAR data [19].
Despite good unwrapping accuracy, these works [11], [19]
only leverage on spatial priors of an individual interferogram,
without exploiting temporal priors in interferogram time series.
Nevertheless, temporal coherence is crucial for applications
such as ground motion detection and tracking.

In this paper, we propose a novel approach to improve
spatio-temporal InSAR phase unwrapping by using an un-
trained and under-parameterized neural network, in which
a latent-level temporal code generator is cascaded with an
image-level spatial generator. The first acts as a good InSAR
temporal prior, whereas the second as an InSAR spatial prior.
This complementarity enables our model to consistently re-
move phase unwrapping errors in the time series of unwrapped
interferograms. Our model is untrained in the sense that we
do not need any training dataset. Network parameters are
learnt only using as guidance the unwrapped and error-prone
interferograms generated by a conventional phase unwrapping
method. As a consequence, the network should necessarily be
under-parameterized to allow regularization and avoid overfit-
ting to the guidance interferogram sequence.

II. BACKGROUND: RAW SAR DATA PROCESSING

Synthesized from the radar signal transmitted and received
by a satellite antenna, the SAR images are complex data
containing amplitude and phase. The amplitude generally
varies because, on the ground, the emitted wave is reflected,
transmitted or scattered, depending on the properties of the
terrain. The phase consists of two main components: pixel
phase and path phase. The latter is proportional to the sensor’s
wavelength and contains ground deformation information,
which is the focus of this study.
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Fig. 1. Illustration of raw SAR data processing workflow.

A. SAR data pre-processing

Extracting this ground deformation information involves
applying multiple processing steps to raw SAR images. Fig-
ure I(a) indicates the main data processing chain to finally
extract univariate time series of ground deformation given
raw InSAR path phase data, whereas Figure 1(b) details the
steps of pre-processing, which consists in obtaining wrapped
interferograms from raw data. In this work, we use SNAP
(Sentinel Applications Platform) software [25] to perform this
pre-processing. Raw SAR images of the same area acquired
at different times are back-geocoded, which spatially aligns
all these images to a single reference image, ensuring precise
pixel-by-pixel correspondence. Interferograms are then gener-
ated, which are differences between the phases of the acquired
consecutive back-geocoded images, respectively, at instants ¢
and 7+ 1. If ¢; and ;41 denote the phase at pixel p at instant
i and ¢ + 1 respectevely, then this pixel will exhibit a phase
shift Ap(p, i) = @;+1—; in the interferogram, which reflects
the ground deformation occurred between the two acquisition
times. Ay is zero if the difference in the wave’s round-trip
distance between the target and the satellite is either zero or
an integer multiple of the radar’s half wavelength. Otherwise,
Ay €]0, 27].

Substracting the digital elevation model (DEM), the topog-
raphy contribution and the orbital phases from these inter-
ferograms, gives the phase representing terrain deformation.
However, the noise due to disturbance like spatio-temporal
decorrelations and atmospheric artifacts affects conventional
phase unwrapping methods, leading to unwrapping errors that
compromise the accurate evaluation of terrain deformation.
B. Phase unwrapping

Let us consider now %) and ¢ the wrapped and unwrapped
phases respectively, of a given interferogram. For each pixel
p, the unwrapped phase ¢ can be derived from the wrapped
one v, following the equation

o(p) = ¥ (p) + 2k(p).7. ¢))

The aim of phase unwrapping operation is to find the appro-
priate integer value of k(p) € Z for each pixel p.

However, this task is often prone to errors caused by
SAR acquisition noise and inaccuracies in the unwrapping

algorithms themselves. These errors, known as residues, arise
when the sum of the phase gradients between four adjacent
pixels in an interferogram is non-zero. Even a small percentage
of residues in v can lead to significant variations in ¢, resulting
in violations of Itoh’s condition.

III. PROPOSED METHOD
A. Overview

In this paper, we propose a novel neural model learnt in
an untrained fashion, which effectively corrects unwrapping
errors and preserves the space-time structure of InSAR phases.
Our model is untrained in the sense that it is learned only
on the noisy wrapped InSAR data to be processed, with-
out any additional training data, labeled or unlabeled. Via
network inference, it transforms a randomly generated three-
dimensional tensor Z € R0 xwoxko into a temporal sequence
of unwrapped interferograms, which can be represented as a
three-dimensional tensor T € R"*"** with [ being the length
of the sequence and h x w being the spatial resolution of each
unwrapped interferogram.

Figure 2 illustrates the general architecture of our model
that consists of three main components: a traditional phase
unwrapping method as guidance, an image-level spatial gen-
erator Gy and a recurrent gated neural network-based temporal
generator working on the latent code space denoted by G¢.

The random input tensor Z is split into 2 parts: Zg; €
RhMoxwoxks and 7, € Rhoxwoxkv with k, + k, = ko. The
former is dedicated to generating static phase information,
while the latter is used for temporal phase variations. The
tensor Z, is first fed into the code-level temporal generator
G, which outputs a latent code sequence C € R hoxwoxke
ie. C = Go(Z,), each slice C; with dimension (hg, wo, k)
being a latent code at a given instant ¢. Note that the inference
via G does not change the spatial dimension (hg, wp) and the
channel dimension k, of the tensor. It works as a temporal
latent code generator by transforming a single random spatial
code into a code sequence that encapsulates the temporal
variations of an InSAR time series.

Then, each generated code slice C; € Rhoxwoxks iy C,
which captures temporal variations, is concatenated along
the channel dimension with Z, € R0 *%oxks encapsulating
spatial information to form a new code slice C/, € R/ 0xwoxko,
Note that Z, is shared across all time instants, as we assume
that unwrapped phase images in an InSAR time series are
highly correlated and share consistent spatial information for
stable regions unaffected by ground deformation. The resulting
four-dimensional code volume C’ € R!X/0xwoxko jg then fed
into the image-level generator G; to output the unwrapped
InSAR sequence, represented by the tensor T' € R*"*%_ Note
that the channel dimension k of the output tensor is reduced
to 1, since interferograms are single-channel images.

During the learning process, the network’s output is guided
by a tensor Tg = [fu(I'), fu(I?),..., fu(I')], where the
unwrapped interferograms f, (I°) are stacked up. The no-
tation f,(I') denotes the phase unwrapping result using a
conventional phase unwrapping algorithm f,, performed on
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Fig. 2. Overview of the proposed untrained neural networks architecture for
spatio-temporal refinement of unwrapped InSAR phase time series.

the wrapped interferogram I°. This phase unwrapping is per-
formed per image, without temporal constraint. Note that the
obtained guidance unwrapped images are generally of low
quality, spatially noisy and temporally inconsistent.

Overall, the whole network G = {G¢, G} is optimized by
minimizing the following loss function:

Lgo,g, = ||T - T
= ”gl(gc(zv)aZS) -

with ||.|| denoting L2-norm.

It is important to note that in the same vein as conventional
phase unwrapping algorithms, our model is said “untrained”
since the learning is performed only given the initial wrapped
interferograms [I',I2,...,I]. No additional labeled or unla-
beled training data is required. As a consequence, our method
can be directly plugged onto any conventional phase unwrap-
ping algorithm, while most of the deep learning based phase
unwrapping models fail when training data is lacking.

The learning process of our network is illustrated in Figure
3. An early stopping is performed to avoid overfitting to the
guidance sequence Tg.

2
Tl

B. Conventional phase unwrapping as guidance

We use a conventional phase unwrapping method as guid-
ance in our method. This method is applied independently to
each image in the wrapped interferogram stack before passing
them to our neural model. Several phase unwrapping methods
[11, [3], [5], [13], [18] are assessed as candidates for guidance.
The comparison of these methods are made on real-world
and synthetic phase-wrapped data for which the unwrapped
ground truth is available at [22]. The method SNAPHU [18]
is finally chosen as our guidance since it provides more
temporal consistency in the unwrapped interferograms than
other candidate methods, despite some evident errors.

C. Image generator as InSAR spatial prior

Similar to [14], we adopt a decoder-like architecture
which transforms a stack of low-dimensional latent codes

Fig. 3. Illustration of the network learning. Z denotes the input noise tensor,
which is processed through the network with weights 6 updated at each
iteration, to generate the output T'y. Gradient descent is performed to optimize
0 by minimizing the loss function £ = ||Ty — Tgl|. An early stopping is
performed to avoid overfitting to the guidance sequence Tg.

C’ € RIXhoxwoxko jnto high-dimensional unwrapped inter-
ferograms T € RY*"*% Each network layer, except the last
layer, includes several operation units: pixel-wise linear com-
binations (1 X 1 convolutions), upsampling operations, ReL.U
operations, and channel-wise normalizations. Upsampling x 2
is performed at each layer to progressively increase the spatial
resolution of the intermediate output tensor from hy X wy
to h x w. Channel normalization enables fast and robust
model learning. Finally, 1 x 1 convolutions are adopted to
keep the number of network parameters sufficiently small. The
under-parameterized nature of our generator enables efficient
regularization of the refinement process and avoids overfitting
while the network parameters are learned only using error-
prone guidance interferograms. In the last layer, only the linear
combination unit is applied to obtain the output tensor.

It is observed in our experiments that this structure effi-
ciently removes phase unwrapping errors made by the con-
ventional phase unwrapping algorithm SNAPHU. However,
performing refinement independently on each of the InSAR
images in the time series can result in temporal inconsistency
(c.f. Figure 5). This is why we choose to combine the image-
level generator with a code-level recurrent neural network,
enabling our model to efficiently capture both the spatial and
temporal prior of InNSAR time series at the same time.

D. Code sequence generator as InSAR temporal prior

We employ Gated Recurrent Unit (GRU) to model the
temporal prior in InSAR time series. The choice to use GRU
in our work is primarily driven by its simple structure, which
includes only two gates (update and reset), compared to Long
Short-Term Memory (LSTM), which has three gates (input,
forget, and output). This streamlined architecture of GRU
allows for faster optimization during model learning, thanks
to fewer network parameters. Similar to the image generator
architecture, 1 x 1 convolutions are employed to maintain a
low parameter count, thereby reducing the risk of overfitting.
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IV. EXPERIMENTS
A. Experimental data

1) Synthetic data: In our experiments, the synthetic test
data is downloaded from [22]. These wrapped phase images
are of spatial resolution 128 x 128 and are originally noise-
free. Gaussian noises of standard deviation o = 1.6 are then
applied. Since these synthetic wrapped phase images are not
part of a time series, we use them to evaluate the spatial
refinement capability of our model, leveraging the availability
of ground truth data.

2) Real-world data: The open-access policy of Sentinel-1
data is the primary reason for its selection in our study. Fur-
thermore, Sentinel-1 provides several advantages, such as its
frequent revisit time (6 to 12 days), its ability to acquire data
under all weather conditions and its short C-band wavelength
(A = 5.6cm), which enables the detection and measurement
of even minor ground deformations.

Experiments are conducted on areas of around 52km? in
France. For each of these areas, 28 raw SAR images of
resolution 128 x 128 (multilooking) from the Sentinel-1 archive
[23] are downloaded, covering the period from January 2022
to December 2022. For each studied area, 27 wrapped inter-
ferograms are then obtained from these 28 raw SAR images
by following the SAR data pre-processing steps described
in Figure 1(b). These interferograms are then individually
unwrapped by the conventional method SNAPHU by using
the software snaphu-v2.0.7 (the latest version [24] released
on February 2024) and sorted in chronological order before
being fed to our model as data guidance. We also use EGMS
product to extract unwrapped phases, which are considered as
baseline.

B. Experiments and results

To assess the effectiveness of our method, two different
approaches to perform phase unwrapping and refinement are
studied on parallel. The first approach consists in learning
a spatial generator per interferogram, without the code-level
sequence generator performing temporal regularization. The
second approach follows the complete processing framework
described in Section III-A. An early stopping is executed after
500 learning iterations. This number is determined empirically
to ensure that the generated outputs closely approximate the
unwrapped guidance while preventing the learned model from
overfitting to this same guidance which is error-prone.

Figure 4 shows the resulting unwrapped interferograms
when testing on synthetic data. The unwrapped phases ob-
tained by our method appear to closely match the ground truth.
While the strong noise in the test data significantly reduces the
unwrapping performance of reference methods, our proposed
approach remains capable of delivering accurate estimations.

Figure 5 shows the visual comparison of the unwrapped
interferograms when applying to real-world data. Each column
displays the obtained two successive unwrapped interfero-
grams taken in a time series by using different methods. It
can be observed that our complete model incorporating both
the latent code-level temporal generator and the image-level

spatial generator is capable to generate temporally consistent
unwrapped phase images within a time series, while other
methods lack this capability.

This capability of generating consistent unwrapped InSAR
phases is also assessed in Figure 6, which displays the phase
evolution across the time obtained by different methods.
In order to generate these time series, we geocode all the
interferogram sequences in the reference coordinate system
CRS WS84, then re-project them into the CRS LAEA Eu-
rope ETRS89, the coordinate system where the measurement
points in the EGMS product are projected. We compare our
results against the calibrated EGMS product on the available
measurement points. The results in Figure 6 show that our
complete model (temporal code generator + spatial gener-
ator) can produce temporally consistent phase time series
and match closely to the EGMS baseline. On the contrary,
other methods generate inconsistency and large fluctuations
across the time. Table I shows the errors in terms of RMSE
when comparing different phase unwrapping methods against
the EGMS baseline. Our partial model, despite only learning
an image generator independently frame by frame, achieves
lower errors than other reference methods. This performance
is still significantly improved by using our complete model
incorporating both the temporal and spatial generators, which

obtains the lowest RMSE.
TABLE I
PERFORMANCE OF DIFFERENT METHODS COMPARED TO EGMS AS
BASELINE IN TERMS OF RMSE (MIN, MEAN, MAX).

RMSE
Methods Min | [ Mean | | Max ]
SNAPHU 61.68 68.18 74.36
GF+SNAPHU 49.52 53.63 57.89
BM3D+SNAPHU 17.05 26.43 39.27
TV-L1+SNAPHU 14.99 20.74 31.55
Ours (Image generator only) | 10.68 18.20 26.76
Ours (complete model) 1.84 8.37 20.23

V. CONCLUSION

In this paper, we proposed an under-parametrized deep gen-
erative model combining an image generator and a recurrent
network-based sequential code generator to correct spatio-
temporal unwrapping errors in InSAR phase time series. Our
model is untrained, meaning it requires no additional training
data beyond the unwrapped phase data it aims to refine.
Experimental results on both synthetic data and real-world
data demonstrate that the proposed model effectively removes
phase unwrapping errors and enhances temporal consistency.
In future work, we will further investigate the use of this model
in the applications of ground deformation detection.
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