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Abstract—Intersection over Union (IoU) is a widely used
criterion that quantifies the overlap between two bounding boxes.
It plays a crucial role in object detection, serving both as a
cost function for training detection models and as a criterion
for evaluating their performance. The IoU value between the
ground truth and predicted boxes determines whether a detection
is considered accurate, based on a predefined threshold. However,
this approach poses challenges when detecting small objects,
especially in situations where annotated data is scarce, such as in
few-shot learning scenarios. The scarcity of supervision hinders
the learning of robust localization, which is especially detrimental
for small objects. A small discrepancy of just a few pixels between
the predicted and annotated bounding boxes can result in a false
detection for small objects. To address these issues, we propose
Scale-adaptive Intersection over Union (SIoU), a new controllable
and adaptive similarity criterion that adjusts based on object size.
First, SIoU helps to find a better balance between small and large
objects during the training of few-shot detection methods, for
which small objects are extremely problematic. Experiments on
four distinct datasets show superior detection performance when
using SIoU as a cost function. Second, by being more lenient with
small objects, SIoU aligns more closely with human perception
than IoU, making it a more suitable evaluation criterion.

Index Terms—Object Detection, Few-Shot Learning, IoU,
GIoU, Small Objects.

I. INTRODUCTION

Despite significant progress in object detection, locating
small objects remains a persistent challenge (see e.g., [1],
[2], [3], [4], [5]). This difficulty is exacerbated in scenarios
where annotations are sparse, such as in few-shot learning, as
demonstrated by [6]. In such cases, the limited supervision
prevents the model from learning robust localization, and
errors in localization become especially problematic for small
objects [7]. Most detection pipelines, including few-shot object
detection (FSOD), rely on Intersection over Union (IoU) as a
regression loss [8], [9], for example selection [1], [2], [10], or
as an evaluation metric. However, IoU is far from ideal when
it comes to detecting small objects.

The main issue with IoU is that it is invariant to object
size. Specifically, if two bounding boxes, b1 and b2, are offset
by ρ pixels, scaling both the boxes and their coordinates by
the same factor does not alter the IoU. While this invariance
may seem desirable in some cases, it becomes problematic
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when dealing with small objects. IoU is typically used with a
threshold, such as considering detections with an IoU greater
than 0.5 as correct. However, this threshold is fixed for all
object sizes, which means that for small objects, even a small
localization error, εloc (i.e., the absolute pixel shift), can result
in an incorrect detection. In contrast, larger objects can tolerate
larger localization errors without failing the IoU threshold.

Furthermore, the ratio between localization error and object
size increases significantly for small objects (see Figure 1
right). Despite being trained with IoU, existing networks are
not size-independent and are much less effective at detecting
small targets. To address this issue, we propose Scale-adaptive
Intersection over Union (SIoU), an extension of IoU that
adapts to object size, providing a more balanced and accurate
detection performance across all object sizes.

Fig. 1. (Left) Evolution of the IoU, NWD [15], SIoU with γ = 0.5
and γ = −1, and α-IoU [16] criteria as a function of the localization
error εloc (in pixels) between a prediction and a label for different
object sizes ω ∈ {8, 32, 96}. (Right) Ratio between the localization
error εloc and the object size ω for a detection model trained on the
DOTA dataset. Each point represents the localization error of the
model for an object in DOTA.

SIoU is configurable and allows for giving more or less
importance to small objects while maintaining a behavior
similar to IoU for large objects. The notion of object size
is concretely defined in [11]: small objects are those whose
area ω2 does not exceed 322 pixels, medium objects satisfy
32 < ω ≤ 96, and large objects have ω > 96. SIoU can
be used as a cost function to favor small objects during
training. Our experiments show that this leads to significant
improvements in detection under the few-shot regime (FSOD)
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on natural images (on the Pascal VOC dataset [12] and
MS COCO dataset [11]), as well as on aerial images (on
the DOTA dataset [13] and DIOR dataset [14]). We focus
our analysis on the few-shot learning regime, as it is more
impacted by the presence of small objects and better reflects
real-world application scenarios. However, consistent results
for conventional detection are also presented. SIoU can also
be used as a similarity criterion when evaluating models. A
subjective study we conducted with 74 participants shows that,
on average, humans are more lenient than IoU when it comes
to small objects. Thus, SIoU is a more relevant criterion than
IoU for evaluating detection models and building applications
that are better suited to human users

II. SIOU: NEW PROPOSED CRITERION

Before presenting the new criterion, let us first recall the
definition of IoU and some of its variants.

A. IoU and its variants
The IoU between two bounding boxes b1 =

[x1, y1, w1, h1]
T and b2 = [x2, y2, w2, h2]

T is calculated
as the ratio of the area of their intersection to the area
of their union. Here, xi and yi represent the coordinates
of the center of the box bi, while wi and hi represent
its width and height. Many variants of IoU have been
proposed in the literature. One of the most well-known is
the Generalized IoU (GIoU) [17], which generalizes IoU
when the union between b1 and b2 is empty. For this, GIoU
subtracts from the IoU a term that measures the distance
between the two boxes. Thus, GIoU(b1, b2) ∈ [−1, 1] while
IoU(b1, b2) ∈ [0, 1]. GIoU is particularly effective as a loss
function: LGIoU(b1, b2) = 1 − GIoU(b1, b2) because it
alleviates optimization issues with LIoU when the boxes do
not overlap. α-IoU [16] is another variant of IoU, which
raises IoU to the power of α. α-IoU penalizes predictions
with a large IoU with a ground truth box, aiming to improve
detection accuracy in general. α allows adjusting the desired
precision. More recently, [15] proposed an alternative to better
detect small objects. Its principle relies on the calculation
of a Normalized Wasserstein Distance (NWD) between two
Gaussian distributions fitted to the boxes b1 and b2. This
criterion is more lenient for small boxes. However, when b1
and b2 have the same dimensions, NWD becomes equivalent
to an Euclidean distance between the centers of the boxes
and thus loses its variable behavior depending on the object
size.

B. Scaled-adaptative Intersection over Union
In order to address the difficulties of detecting small objects

in a few-shot learning regime, we propose Scale-Adaptive
Intersection over Union (SIoU), defined as follows:

SIoU(b1, b2) = IoU(b1, b2)
p

where p = 1− γ exp
(
−
√
w1h1 + w2h2√

2κ

)
,

(1)

where p is a function of the object size, so the IoU values
are either amplified or reduced depending on the size of the

objects. The parameters γ ∈] − ∞, 1] and κ > 0 allow for
controlling the strength of the amplification and the speed with
which the IoU behavior is restored for large objects:

lim
τ→+∞

SIoU(b1, b2) = IoU(b1, b2) (τ =
1

2
(w1h1 + w2h2)).

Thus, SIoU enables a variable yet controlled behavior
depending on the object size, while retaining properties similar
to IoU. When γ > 0, SIoU assigns higher similarity values
to smaller objects, making it better aligned with human
perception (see Section III). Conversely, with γ < 0, SIoU
generates lower values for small objects, which we will see in
Section IV has benefits for training detection models. Figure
1 (left) shows the difference in behavior between the criteria
discussed and proposed in the previous sections (IoU, SIoU,
NWD, and α-IoU), for different object sizes.

SIoU can then be generalized as IoU in GIoU. It is simply
necessary to replace IoU with GIoU (denoted g(b1, b2) below)
in equation 1:

GSIoU(b1, b2) =

{
g(b1, b2)p if g(b1, b2) ≥ 0

−|g(b1, b2)|p if g(b1, b2) < 0
. (2)

Thus, we define the cost functions LSIoU(b1, b2) = 1 −
SIoU(b1, b2) and LGSIoU = 1 − GSIoU(b1, b2). These cost
functions can directly replace LIoU and LGIoU. It is important to
note the formal similarity between α-IoU and SIoU. However,
there is a crucial difference between the two. The behavior
of α-IoU does not change with the size of the objects, unlike
SIoU (see Figure 1, left), and does not contribute to improving
small object performance nor to a better alignment with human
perception.

III. ALIGNMENT WITH HUMAN PERCEPTION

In addition to its utility for training detection models, IoU is
also necessary for their evaluation. These models are typically
evaluated with the mean Average Precision (mAP) at an IoU
threshold (for example, 0.5). This means that a bounding
box prediction is considered correct only if its IoU with a
ground-truth box exceeds the defined threshold. For small
objects, this becomes problematic because a shift of just a
few pixels is enough to turn a correct prediction into a false
positive. Therefore, detection performance for small objects is
often low, even though the associated predictions seem quite
satisfactory to a human observer. Indeed, a human is likely to
be more lenient than IoU when evaluating small objects.

We conducted a subjective study in which an observer must
rate a prediction relative to a ground-truth box on a scale
from 1 (very poor localization) to 5 (very good localization).
Seventy-four participants (specialists and non-specialists in the
field) took part in this study, resulting in a total of over 3000
ratings. The results show that, on average, a human assigns
higher scores to small objects than to large ones when the
ratio εloc/ω is fixed. In other words, the human eye is more
lenient than IoU with small objects. For reference, IoU remains
constant when εloc/ω is fixed. SIoU, on the other hand, relaxes
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Fig. 2. Average value of IoU (left) and SIoU (right) for different
object sizes s and rating r ∈ {1, 2, 3, 4, 5}. The scores are given as
the relative deviation from the average score for each r.

this invariance and aligns better with human perception. This
is visible in Figure 2, which shows the relative deviation of
IoU (left) and SIoU (right) grouped by rating r and object size
s, relative to the mean for each rating r. More specifically, we
define:

cs,r =
Cs, r − 1

|S|
∑
s ∈ SCs, r

1
|S|
∑
s ∈ SCs,r

, (3)

where Cs,r represents the average IoU or SIoU for an object
size s and a rating r. This figure first shows that to assign
a rating r, a human has a lower IoU threshold for small
objects than for large ones. It then shows that SIoU is much
better suited to human perception, as the SIoU thresholds for
a rating r are almost identical regardless of the object size.
This demonstrates a better alignment of SIoU with human
perception.

To reinforce this, Table I shows the correlation values
between the different criteria studied here (IoU, SIoU, α-IoU,
and NWD) and human perception. Again, SIoU is superior to
the other alternatives. Here, we chose γ = 0.2 and κ = 64
to maximize alignment with human perception. Having a
similarity criterion closer to human perception is crucial for
the development of models better suited to human judgment,
which is particularly useful for detection applications (photo-
interpretation, radiology, etc.).

TABLE I. Correlation (Kendall’s τ ) between the values of different
criteria and human ratings. For SIoU, γ = 0.2 and κ = 64, for
α-IoU, α = 3.

IoU SIoU α-IoU NWD

r 0.674 0.701 0.674 0.550

IV. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of SIoU as a cost function,
a series of experiments are presented in this section. We focus
here on the few-shot regime, as it is more demanding for small
objects and closer to real-world applications. The experiments
are primarily conducted on aerial images (DOTA [13] and
DIOR dataset [14]), but results on natural images (Pascal VOC
[12] and MS COCO [11]) are also reported.

A. Implementation Details

In the few-shot learning regime, we mainly focus on
performance for novel classes, i.e., classes for which very
few annotated examples are available. Specifically, for all our
experiments, we used 10 shots (i.e., 10 annotated images per
class). Results on base classes are also included in the tables
for reference. We based our experiments on XQSA [18] [7],
a recent few-shot detection method that operates at multiple
scales to improve small object detection. This method is based
on the FCOS detector [3] and is trained episodically, first on
base classes and then on novel classes.

B. Analysis of the experimental results

First, we compare the influence of the different criteria
discussed and proposed on few-shot detection performance.
These results are reported in Table II. We observe a clear
dominance of SIoU and GSIoU (the criteria are separated into
two groups based on whether they assign identical values or
not when the boxes have an empty intersection). SIoU and
GSIoU significantly improve performance on novel classes,
especially for small objects.

TABLE II. Comparison of few-shot performance using different
criteria: IoU, α-IoU, SIoU, NWD, GIoU, and GSIoU as the cost
function. mAP is reported with an IoU threshold of 0.5 and according
to object sizes: small (S), medium (M), large (L), and all sizes
combined (All), with γ = −3 and κ = 16.

Base classes Novel Classes

Loss All S M L All S M L

IoU 50.67 25.83 57.49 68.24 32.41 10.06 47.87 67.09
α-IoU 46.72 13.24 55.21 69.94 33.95 12.58 46.58 74.50
SIoU 53.62 24.07 61.91 67.34 39.05 16.59 54.42 74.49

NWD 50.79 19.19 58.90 67.90 41.65 28.26 50.16 65.06
GIoU 52.41 26.94 61.17 63.00 41.03 24.01 52.13 69.78

GSIoU 52.91 22.14 61.19 66.02 45.88 34.83 51.26 70.78

1) Impact of γ on the detection performance: It is important
to note that the values of γ and κ must be chosen carefully
when SIoU (or GSIoU) is used in the cost function calculation.
Indeed, as seen in Section III, IoU is too strict for small
objects, and by using γ = 0.2, we obtain a behavior closer to
human perception (this is the case whenever γ > 0). However,
when focusing on training, γ > 0 results in reducing the cost
for small objects (LGSIoU = 1 − GSIoU(b1, b2)). This alters
the optimization balance between small and large objects.
The training then focuses on reducing the cost generated by
large objects, resulting in poorer performance on small objects.
Thus, when SIoU and GSIoU are used as cost functions,
negative values of γ should be chosen. This increases the cost
generated by small objects, and the training then focuses on
detecting small targets. This can be clearly seen in Table III,
which shows the performance on DOTA for different values
of γ. κ has much less influence on performance and is set to
16 in our experiments.

2) Performance detection using four datasets: In order
to demonstrate the robustness of GSIoU, we conducted
experiments on four datasets: DOTA [13] and DIOR [14]
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TABLE III. Evolution of few-shot detection performance on DOTA
for different values of γ, with κ = 16 fixed, using GSIoU as a loss
function, where the mAP is reported with a 0.5 IoU threshold.

Base classes Novel Classes

γ All S M L All S M L

0.5 47.09 21.29 54.67 65.48 30.50 8.83 44.97 65.89
0.25 45.94 21.60 54.39 63.40 30.96 12.53 42.37 64.14

0 52.41 26.94 61.17 63.00 41.03 24.01 52.13 69.78
-0.5 52.80 27.16 61.19 64.61 41.06 25.20 50.18 72.04
-1 53.03 23.20 61.53 66.68 42.77 27.55 52.01 70.76
-2 54.06 23.68 62.69 66.62 43.67 30.04 51.69 69.66
-3 52.91 22.14 61.19 66.02 45.88 34.83 51.26 70.78
-4 53.59 22.50 62.48 66.18 42.43 27.56 51.79 68.70
-9 53.11 20.98 62.13 67.00 42.63 30.53 48.89 68.62

(containing aerial images), as well as Pascal VOC [12] and
MS COCO [11] (natural images). Using GSIoU instead of
GIoU as the cost function improves detection performance for
novel classes, particularly for small objects (see Table IV).
However, it is noteworthy that for natural images (Pascal VOC
and MS COCO), the gains are slightly smaller compared to
aerial images. This can be explained by the fact that objects
are generally much smaller in aerial images than in natural
images [6].

TABLE IV. Comparison of detection performance between GIoU and
GSIoU on 4 datasets: DOTA, DIOR, Pascal VOC, and MS COCO,
in a few-shot setting. γ = −3 and κ = 16 for DOTA and DIOR, but
γ = −1 for Pascal VOC and MS COCO.

Base classes Novel Classes

All S M L All S M L

DOTA GIoU 52.41 26.94 61.17 63.00 41.03 24.01 52.13 69.78
GSIoU 52.91 22.14 61.19 66.02 45.88 34.83 51.26 70.78

DIOR GIoU 58.90 10.38 40.76 80.44 47.93 9.85 47.61 68.40
GSIoU 60.29 11.28 43.24 81.63 52.85 13.78 53.73 71.22

Pascal GIoU 51.09 13.93 40.26 62.01 48.42 18.44 36.06 59.99
GSIoU 54.47 13.88 40.13 66.82 55.16 22.94 36.24 67.40

COCO GIoU 19.15 8.72 22.50 30.59 26.25 11.96 23.95 38.60
GSIoU 19.57 8.41 23.02 31.07 27.11 12.81 26.02 39.20

3) Additional results on non few-shot setting: Finally, we
also conducted experiments for detection in the classic setting
(i.e., with many annotations) on DOTA and DIOR (see Table
V). Once again, using GSIoU as the cost function improves
detection performance. However, the gains are less significant
as the performance is already much better than in the few-shot
setting.

TABLE V. Standard detection performance on DOTA and DIOR with
GIoU and GSIoU (γ = −3 and κ = 16). Here, mAP is calculated
as the average across multiple thresholds (from 0.5 to 0.95) as is the
case in standard detection.

DOTA DIOR

FCOS All S M L All S M L

GIoU 34.9 17.4 36.6 43.3 48.1 10.1 40.3 63.2
GSIoU 36.8 17.5 40.4 45.2 49.2 11.0 41.2 66.1

V. CONCLUSION

In this paper, we highlighted the suboptimality of IoU both
for training and evaluating object detection models in images,

particularly when it comes to detecting small objects. To
address this issue, we proposed Scaled-adaptive Intersection
over Union (SIoU), an extension of IoU that allows for better
control of the behavior of this metric based on the size of
the objects. SIoU can be easily parameterized to better align
with human perception or to improve the training of detection
methods. In the latter case, using SIoU as a cost function leads
to significant performance gains on both natural and aerial
images in the few-shot learning setting.
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