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Abstract—In this paper, we detect spike-like measurement
errors in accelerometer sensor signals using continuous wavelet
transform based machine learning methods. The wavelet co-
efficients are computed in automatic feature extraction layers
(CWT layers), producing sparse representations of the input
signals. The proposed methods ensure low model complexity,
which allows real-time application. We complement a previously
proposed variable projection based method to estimate wavelet
coefficients with a numerical quadrature based approach. We
present a qualitative and quantitative comparison of the CWT
layers. To demonstrate the generality of the method, we intro-
duce support vector machines supplemented with CWT layers
in addition to previously used neural networks. Sensor fault
detection experiments are conducted on real measurements using
a low-cost accelerometer. The results of the experiments show
that the proposed method achieves perfect accuracy on our
dataset while outperforms previously used approaches in terms
of interpretability and online usage. In addition to convincing
classification accuracy, our results illustrate the interpretability
of the proposed model driven machine learning framework.

I. INTRODUCTION

During measurement campaigns, monitoring data quality is
essential. An important preprocessing step on the measurement
data is the detection and removal of various measurement
errors [1]. These are often invisible or very difficult to detect
for the operators performing the test. Due to the high sampling
rate, tests can generate large amounts of data in a few
seconds. Therefore, the use of automatic detection methods
is necessary to solve the problem. The methods are expected
to be able to run in real time on low-power target hardware,
thus reducing the cost of performing the tests, while meeting
the requirements of industrial applications. Online detection of
faults reduces the time spent on the experiments by allowing
for immediate intervention by test operators.

In this paper, we detect so-called ’spike’ measurement
errors in one-dimensional accelerometer data. These appear as
abnormal peaks in the data that arise and disappear suddenly,

as opposed to peaks caused by physical effects that result in
oscillatory waveforms. Figure 1 shows side by side a normal
peak caused by a physical effect and a spike caused by
hardware malfunction. Such errors can arise in the signal for
various reasons. One reason may be the use of a low-cost
sensor, which is common in rough environments in automotive
testing. Another cause may be cable failure in the test setup
[2]. In some cases, the detection of these errors is difficult
because spikes can appear on physical peaks or extremely
close next to a physical peak. Examples of these types of
errors can be seen in Fig. 2.

Several classical signal processing methods for solving this
problem can be found in the literature. In [3] a Bayesian
spike detection algorithm is proposed. In [4] Deuschle et
al. proposed a method using the Dynamic Time Warping
(DTW) algorithm. These methods, because they do not use
supervised learning models, do not require the generation
of large amounts of labeled data, which is often difficult to
produce. On the other hand, machine learning algorithms like
shallow neural networks or a support vector machine (SVM)
could have running time performance benefits on low-cost
target hardware.

Machine learning (ML) has become popular in recent years
in the signal processing domain. ML algorithms enable the
accurate classification of non-linearly separable datasets which
is often required to solve signal processing tasks. However,
deep learning (DL) approaches use expensive target hardware
hence violate the need for cost-efficient real time usage. DL
methods also usually use millions of parameters which are
difficult for humans to interpret. The AI regulation of the
European Union (EU AI Act [5]) makes the use of trustworthy
and transparent methods mandatory in the fields of safety-
critical engineering applications like biological signal process-
ing or autonomous driving. Explainable AI (XAI) research
aims to develop methods to meet the needs of safety-critical
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signal processing applications. Post-hoc interpretable methods
examine the behavior of previously trained DL models [6].
Model driven [7] or physics-informed [8] ML methods supple-
ment classical AI algorithms with interpretable mathematical
transformations. The parameters of these methods describe
physical phenomena like frequency information of the signal
hence the parameters of the transformations are interpretable
and the developed models exhibit transparent architectures.

Fig. 1. An abnormal spike and a normal peak.

In [9] Kovács et al. introduced a variable projection (VP)
based model driven neural network (VP-Net) whose first
layer acts as an adaptive automatic feature extractor. More
precisely, the first layer of a VP-Net expresses the (1-D)
input signals by projecting them onto a finite dimensional
subspace spanned by a parameterized orthogonal system in
an appropriate Hilbert-space. The parameters of the VP based
automatic feature extraction layer trained together with the
weights of the neural network. In [10] Dózsa et al. extended
the method to SVM classifiers (VP-SVM). Implementations
on low-cost microcontroller of VP-SVM [10] and VP-Net [11]
were made in C/C++ languages.

These methods enable the solution of regression or classi-
fication problems where the input signal has quasi-periodic
behavior. That is, a single input example is expected to
correspond to a single ”quasi” period of some underlying
time process. In [10] we tested VP-SVM in ECG arrhythmia
detection and detection of the aforementioned spike type
measurement errors.

Hermite function system is commonly used in biological
signal processing because of the shape similarities of various
signals like ECG heartbeats [12], [13]. Since tire sensor signals
are quasi periodic and have similar morphological properties to
ECG signals, the so-called adaptive Hermite function system
was also effectively used as feature extractors [14]. However,
spike type measurement errors do not share morphological
similarities with ECG signals and various generalized Hermite
expansions were unable to capture significant properties of
the data. Instead, a preprocessing step was made to solve this
problem in [10]. Continuous wavelet transform (CWT) coeffi-
cients of the peaks at high frequencies were pre-computed
using the Morse wavelet. Then summing the columns of
the generated CWT coefficient matrix resulted signals with
clearly distinguishable morphologies between physical peaks
and spikes. The transformed peak signals can be approximated
properly with adaptive Hermite functions. These transformed
signals passed to the adaptive Hermite based VP-SVM which
solved the task successfully.

In [15] we introduced CWT based automatic feature ex-
traction layer with neural networks (CWT-VP) where the

Fig. 2. A spike appearing on top of a normal peak and a spike close to a
normal peak, respectively.

VP based approximation of CWT coefficients of the input
signals were computed. In this paper, we detect spikes with
CWT based automatic feature extraction layers based on our
previous results in [10] and in [15]. The proposed method
significantly simplifies the fault detection scheme proposed
in [10], because the CWT based preprocessing task can be
omitted. This reduces the computational cost and increases
the interpretability of the method.

In Sec. II we introduce novel quadrature based approxima-
tion of CWT coefficients in the feature extraction layer (CWT-
Q), in Sec. III compare the proposed method to CWT-VP.
In addition we test CWT-VP and CWT-Q with model driven
variations of neural networks and SVM classifiers.

II. CONTINUOUS WAVELET TRANSFORM BASED
AUTOMATIC FEATURE EXTRACTION LAYERS

Suppose f, ψ ∈ L2(R). The continuous wavelet transform
of f respect to ψ is

Wψf(τ, λ) :=

∫
R
f(t)ψτ,λ(t)dt, (1)

where τ, λ ∈ R, λ ̸= 0, ψ(t) denotes the complex conjugate
of ψ(t), f denotes the input signal and ψ is the so-called
mother wavelet or analyzing wavelet. The wavelet transform
is a similarity measure of the input signal with respect to a τ
translated and λ dilated wavelet function, i. e.

ψτ,λ(t) = |λ|−1/2ψ(λ−1 · (t− τ)). (2)

Low λ scale values correspond to high frequency components
and high λ scale values correspond low frequencies in the
input signal. That is, a CWT coefficient gives frequency
information at scale λ and at translation τ in time. We note,
although by definition we could use any ψ ∈ L2(R) as an
analyzing wavelet, using functions that are well localized in
the time and frequency domain have many advantages from
an application point of view [16]. These so-called admissible
wavelet functions conserve the energy of the input signal and
guarantee the reconstruction of the input from an appropriate
number of wavelet coefficients. For example, Ricker and
Morlet wavelets satisfy the aforementioned properties and are
widely used in signal processing applications [16].

In many use cases, the equidistant discrete sampling of the
input signal can be accessed. Although CWT is a continuous
model, numerical approximations of the method exist in the
literature, for example, the Matlab implementation of the CWT
algorithm [17]. We note that other methods like the discrete

1798



wavelet transform (DWT) exist in the literature to compute the
time-scale information of the input vector [16], but CWT has
finer resolution and DWT methods are not translation invariant
[16]. The latter property will be essential in our use case of
spike detection.

Classical applications of the CWT routine compute a large
number of coefficients at time points ti (i = 0, . . . N −
1, N ∈ N) and at M ∈ N number of scales, i. e. a CWT
coefficient matrix with size M×N is calculated which usually
contains many more entries than what is necessary to solve
the underlying signal processing problem. Thus, this type of
approach requires significant computational resources and is
usually accompanied by the use of deep learning models for
image processing tasks [18].

In [19], the WaweletKernelNet (WKN) architecture was
proposed where the CWT coefficient matrix was computed
with wavelet kernel based convolutions acting as an automatic
feature extraction layer of a deep CNN model. In WKN, the
scale and the translation parameter of convolutional kernels
were optimized. With convolution we can compute CWT
coefficient for every ti at a given scale. This means, that the
number of computed features is usually large for a WKN and
subsequent pooling and dropout operations are used to achieve
a sparse signal representation.

A. CWT-VP layer

In [15] we introduced CWT based variable projection
(CWT-VP) neural networks (NN), where only a predefined,
few number of coefficients were computed. The parameters of
the coefficients, translation and dilation pairs, were optimized
together with the weights of the NN during training. Hence
the output of the layer resulted a sparse signal representation
which do not require additional pooling or dropout operations.
The CWT-VP layer computes features that have physical
meaning and can be interpreted by humans. Namely, the CWT-
VP Layer learns the n most important wavelet coefficients
(corresponding to time and frequency information of the
input) from the point of view of the underlying classification
problem. CWT-VP layers can be used with any mother wavelet
whose partial derivatives respect to the optimized parameters
exist. We used the real Morlet wavelet in the CWT-VP layer
and computed the partial derivatives analytically in [15].

The formulation of the CWT-VP layer is

gη : RN → Rn, gη(f) := Ψ(η)+f . (3)

where n << N and Ψ(η)+ denotes the Moore-Penrose
pseudo inverse. We optimize the parameter vector η which
contains (dilation,translation) pairs corresponding to CWT
coefficients. Ψ ∈ RN×n contains the discrete sampling of the
translated and dilated wavelets. Thus η defines the parameters
of the subspace spanned by the column vectors of the trans-
formation matrix Ψ. In [20] Golub and Pereyra derived the
analytical form of the partial derivatives of the pseudo inverse
matrix which allows for optimizing η using gradient based
methods and a seamless integration of gη into backpropagation
schemes.

To avoid the problem of vanishing gradients, the training
of VP-CWT layers usually requires adding the following
regularizing term to the objective:

JV P (η) :=
α

s

s∑
i=1

∥f i −ΨΨ+f i∥22
∥f i∥22

, (4)

where α is the penalty parameter and s is the batch size during
training.

B. Proposed CWT-Q layer

In this section we introduce a new approach to calculate
CWT coefficients. Henceforth assume, that f ∈ L2(R) is
compactly supported in [a, b] ⊂ R. In the proposed method,
we approximate wavelet coefficients using Riemann sums, that
is a CWT coefficient is equal to

ci :=

∫ b

a

f(t)ψτi,λi
(t)dt ≈

N−1∑
j=0

f(tj)ψτ,λ(tj), (5)

where N is the number of sampling points and a =: t0 <
t1 < . . . < tN−1 := b is an equidistant partitioning of the
support of f . Then, we can define the proposed CWT-Q layer
as the mapping

gη : RN → Rn, gη(f) := Ψ(η)Tf , (6)

where the columns of Ψ contains the sampling of translated
and dilated wavelets. Then for the backpropagation step we
have to compute only the partial derivatives respect to η of Ψ:(

∂gη

∂η
f

)
j

=
∂Ψ

∂ηj
f (7)

where
(
∂gη

∂η f
)
j

denotes the j-th column of the Jacobian of

gη . In the proposed CWT transformation we have η2j = λj
and η2j+1 = τj (j = 1, . . . , n), hence ∂Ψ ∈ RN×2n, Ψ ∈
RN×n. We regularize the parameters of the layer with L2

regularization:

JQ(η) := α

n∑
i=1

c2i , (8)

where α is the penalty term and n is the number of computed
features. One benefit of the proposed approach is that given a
compactly supported, continuously differentiable signal f , we
can estimate the error of the numerically computed wavelet
coefficients by∣∣Wψf(λ, τ)− h ·

(
Ψ(η)Tf

)∣∣ < h · M1(b− a)

2
, (9)

where h := t1 − t0 and

M1 := max
ξ∈[a,b],k=1,...,m

∣∣f ′(ξ) · ψλk,τk(ξ)
∣∣ .

For the VP based approximation, error formulas also exist
[21]. One advantage of the quadrature based method that we
do not have to compute the pseudo inverse of Ψ. CWT-Q
requires less computation both at the forward and backward
passes, but CWT-VP ensures the L2-optimal reconstruction
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of the input signals. The trained features also depend on the
different regularization strategies. Both the quadrature and VP-
based wavelet coefficient estimates can be useful depending
on the requirements of a given classification or regression
problem. We compare the performance of the two layer in
the next section.

III. EXPERIMENTS AND RESULTS

In our experiments, we used data from a low-cost ac-
celerometer sensor instrumented on a wheel hub of a car
[3]. We extracted the peaks from the accelerometer signal
by extending the peak location with its neighboring samples.
The created dataset was labeled by an expert. The number of
extracted spike-type errors was very low compared to extracted
physical peaks resulting in a highly unbalanced dataset. We
managed this issue by creating a balanced training set with
the same number of spikes and physical peaks.

The architecture of the CWT based machine learning mod-
els were the following. In the first layer n number of CWT
coefficients were computed with CWT-Q (Eq. 6) or CWT-
VP (Eq. 3). After the automatic feature extraction step, the
calculated features were passed to the underlying classification
algorithm. In the case of CWT-Q-NN and CWT-VP-NN the
features were passed to a neural network with additional
hidden layers. ReLu activation functions were used between
these layers. Radial Basis Function (RBF) kernel SVM was
used for CWT-Q-SVM and CWT-VP-SVM after the first layer.
For a precise description of the employed model architectures,
we refer to [9] and [10].

In Table I we can see the results of the experiments.
Using the aforementioned training and test sets, we classified
the accelerometer signals using four different adaptive CWT
based model driven ML schemes. We compared our results
with an Hermite-expansion based VP-SVM model (requiring
preprocessing), and a number of classical ML algorithms.

Fig. 3. Spike near a physical peak with its scalogram at high frequencies
(low scales). Trained features marked with green dots. Top: trained CWT
coefficients with CWT-Q layer. Bottom: two trained coefficients with CWT-VP
at high frequencies, one coeff. corresponding to low frequrncy not displayed.

Models with CWT based automatic feature extraction lay-
ers achieved perfect accuracy while they do not need input
transformation as in the case of Hermite based VP-SVM.
Classical ML methods could not differentiate spikes from
normal peaks perfectly. We used Morlet wavelet in CWT-VP

Fig. 4. Physical peak with its scalogram at high frequencies (low scales).
Trained features marked with green dots. Top: trained CWT coefficients
with CWT-Q layer. Bottom: two trained coefficients with CWT-VP at high
frequencies, one coeff. corresponding to low frequrncy not displayed.

Model Accuracy

CWT-VP-NN 100%
CWT-Q-NN 100%

CWT-VP-SVM 100%
CWT-Q-SVM 100%

Hermite VP-SVM (CWT-preproc.) 100%
FCNN 94.74%

SVM (RBF kernel) 97.37%
Random Forest 86.84%
Decision Tree 97.37%

Gaussian Naive Bayes 60.53%
Gradient Boost 86.84%

TABLE I
CLASSIFICATION RESULTS OF THE SPIKE DATASET

and CWT-Q layers. In all cases we used three coefficients to
match the model complexity of the Hermite expansion based
VP-SVM. CWT based layers followed by a neural network
with one hidden layer and sigmoid with one output layer for
binary classification. For the CWT-VP-SVM we used the same
optimized implementation as in the case of Hermite VP-SVM
in [10]. After a hyperparameter search, we find that CWT-
VP and CWT-Q layers achieved perfect accuracy with only
9 and 12 neurons, respectively. The public implementation of
the methods can be found at [22].

The interpretability of the trained CWT coefficients is
underlined by comparing the scalograms of the input signals
with the positions of the learned wavelet coefficients. On Figs.
3 and 4 different representations of a spike appearing close to
a physical peak are illustrated. We generated the scalograms
using MATLAB cwt routine at high frequencies, then plotted
the wavelet coefficients learned by the proposed CWT-Q
and CWT-VP layers as green points. In conclusion, both
CWT layers learned meaningful information corresponding to
significant scales and time instances which can be used to
recognize the presence of spikes. Interestingly, although initial
parameters were uniformly chosen for CWT-Q and CWT-
VP based methods, the time-scale positions of the learned
coefficients were somewhat different. This can be explained by
the different regularization terms used by the two approaches:
in order to produce good approximations of the input signals

1800



(in L2 norm), CWT-VP needed to learn a wavelet coefficient
position corresponding to lower frequencies. Hence the third
coefficient is not depicted on the truncated scalograms in Figs.
3 and 4. In contrast, the CWT-Q layer was not regularized
to compute wavelet coefficients which provide a good ap-
proximation of the input signals. Hence, all 3 learned scale-
time positions corresponded to high frequencies. Since the
frequency profile of spikes and physical peaks differ most
significantly at higher frequencies, the learned parameters have
interpretable meaning.

IV. CONCLUSION

In this paper we used continuous wavelet transform based
automatic feature extraction layers to detect spike measure-
ment errors in accelerometer signals. We proposed a novel
quadrature based approximation of the CWT coefficients
(CWT-Q layer). We compared CWT-Q to a VP based method.
In the conducted experiments both models achieved perfect
accuracy while requiring less computation than earlier meth-
ods. We also tested CWT-VP and CWT-Q layers with SVMs.
Interpretability of the learned features was also improved
compared to earlier Hermite-expansion based approaches.

In future works we would like to extend the models in other
application areas. The continuation of the research will include
the examination of post-hoc explainability of the parameters
of the underlying classifiers. We would like to define metrics
that could assure the trustworthiness of ML algorithms used
with CWT based feature extraction layers.
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