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Abstract—We investigate hybrid linear-morphological net-
works. Recent studies highlight the inherent affinity of morpho-
logical layers to pruning, but also their difficulty in training.
We propose a hybrid network structure, wherein morphological
layers are inserted between the linear layers of the network, in
place of activation functions. We experiment with the following
morphological layers: 1) maxout pooling layers (as a special case
of a morphological layer), 2) fully connected dense morphological
layers, and 3) a novel, sparsely initialized variant of (2). We
conduct experiments on the Magna-Tag-A-Tune (music auto-
tagging) and CIFAR-10 (image classification) datasets, replacing
the linear classification heads of state-of-the-art convolutional
network architectures with our proposed network structure for
the various morphological layers. We demonstrate that these
networks induce sparsity to their linear layers, making them
more prunable under L1 unstructured pruning. We also show
that on MTAT our proposed sparsely initialized layer achieves
slightly better performance than ReLU, maxout, and densely
initialized max-plus layers, and exhibits faster initial convergence.

Index Terms—mathematical morphology, morphological neu-
ral networks, neural network pruning, sparsity

I. INTRODUCTION

Deep neural networks (DNNs) achieve state-of-the-art per-
formance in domains like computer vision, natural language
processing, and audio understanding. Their success stems
from their ability to learn hierarchical representations from
large datasets. However, as DNNs grow in size, they demand
significant computational and memory resources, making de-
ployment on edge devices challenging [4]. This has driven
research into sparsity and pruning techniques [1].

Pruning techniques aim to remove redundant weights from
a network while preserving its predictive accuracy. Various
methods, such as structured and unstructured pruning, weight
quantization, and low-rank approximations, have been ex-
plored to enhance efficiency. L1 unstructured pruning [16], for
instance, removes weights based on their magnitude, leading
to sparser models that require fewer computations. Despite the
promise of such methods, designing inherently sparse neural
networks remains an open challenge.

Mathematical morphology [11], [18], [22], [27] is a pow-
erful set- and lattice-theoretic methodology, and provides a
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large variety of efficient nonlinear signal operators which have
been widely used in signal processing for many tasks includ-
ing denoising, connected filters, geometric feature extraction,
representation, shape analysis, segmentation, remote sensing,
object detection and recognition [10], [11], [18], [20], [22],
[26]–[28]. Its arithmetic is based on max-plus and min-plus
operations, called dilations and erosions, and is closely related
to tropical algebra [2], [5]. These operations form the basis
for morphological neural networks [23]–[25], which replace
standard inner products with these nonlinear alternatives.

A key property of morphological layers is their high affinity
to pruning. Since they emphasize extremal values rather than
summations over many parameters, they inherently favor spar-
sity. Studies [6], [9], [31] show that morphological networks
are able to maintain accuracy at significantly lower parameter
counts. However, integrating morphological operations into
neural net learning pipelines has been challenging due to
their non-differentiability [7], [9], [23]. To address this, we
propose a hybrid linear-morphological structure, wherein the
activation functions, typically intertwined with fully connected
linear layers, are replaced with explicitly sparse morphological
layers. This design exploits the pruning effect invoked by
morphological layers [6], maintaining trainability by avoiding
over-dependence on them.

Contributions: Our contributions can be summarized as
follows: 1) We propose replacing the ReLU activation layers of
linear networks and/or the pooling layers of maxout networks
by explicitly sparse morphological layers, creating a hybrid
linear-morphological network that balances trainability and
prunability. 2) By replacing the linear classification head of
state-of-the-art convolutional networks [30] with the aforemen-
tioned network structure, and evaluating our approach on the
Magna-Tag-A-Tune [14] (MTAT) and CIFAR-10 [13] datasets,
i) we demonstrate that our proposed network is competitive
with ReLU-based networks and improves upon maxout and
max-plus block networks [31] (in fact, it achieves the best
performance on MTAT) while also exhibiting faster initial
convergence, and ii) more importantly, we show that our
explicitly sparse max-plus block networks naturally induce
sparsity in their linear layers, making them significantly more
prunable under L1 unstructured pruning, and suitable for use
cases where a lower parameter count is required.

Related work: Various works have explored morphological
networks and their applications with varying levels of success.
Some works have focused on replacing the max-pooling
operations with morphological operations [7]. Others have
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introduced hybrid linear-morphological architectures, with the
aim of alleviating the problem of their training [21], [29], [31].

The most closely related works are [6], [31]. [31] introduces
the max-plus block—a combination of a linear and morpho-
logical layer. They show performance gains over [3] and
suggest potential for pruning. Our approach also forms max-
plus blocks but differs in key ways: 1) Sparsity is explicitly
imposed on our morphological layers, aiding in training and
pruning. 2) We use a different topology; instead of replacing
linear layers to keep parameter count constant—hindering test
performance—we insert additional morphological layers in
place of activations and/or maxout pooling, maintaining model
performance. Unlike [31], which uses transfer learning on
CIFAR, we train successfully from scratch. 3) [31] prunes
the weights only of the morphological layer, thereby indirectly
deactivating only some linear neurons, effectively proving that
the morphological layers are prunable. In contrast, we prune
primarily the weights of the linear layers, showing that the
morphological layers induce sparsity to the linear layers.

[6] focuses primarily on pruning, demonstrating that mor-
phological layers are highly prunable, disregarding perfor-
mance. We, on the other hand, i) have given emphasis to
the performance of the networks, by assuming a different
topology and sparsely initializing the morphological layers,
and ii) demonstrate that the inclusion of morphological layers
makes the rest of the layers more prunable.

II. PRELIMINARIES

Tropical (minmax) algebra studies the tropical semirings,
encompassing both the max-plus and min-plus semirings [2],
[5], [17], [19]. The max-plus semiring (Rmax,∨,+) is the set
Rmax = R ∪ {−∞} equipped with the binary operations ∨
(maximum), and + (ordinary addition), while the min-plus
semiring (Rmin,∧,+) is the set Rmin = R∪{+∞} equipped
with the binary operations ∧ (minimum) and +. Within
tropical algebra we can define matrix operations. For example,
for compatible matrices A,B, their max-plus multiplication ⊞
is defined by (A ⊞B)ij =

∨
k aik + bkj , and their min-plus

multiplication ⊞′ is defined by (A ⊞′ B)ij =
∧

k aik + bkj ,
where

∨
k and

∧
k denote maximum and minimum over k.

Mathematical morphology is well-defined on complete lat-
tices [11], i.e. partially ordered sets in which every subset has
a supremum and an infimum. Morphological operations map
vectors and signals between complete lattices using two funda-
mental transformations: dilations (that distribute over suprema)
and erosions (that distribute over infima). Shift-invariant signal
dilations (erosions) correspond to nonlinear max-plus (min-
plus) convolutions. These max-plus and min-plus operations
connect mathematical morphology with tropical algebra.

In this paper, we focus on dilations and erosions defined
on the set Rn

of finite discrete-time signals (i.e. vectors
x = [xi]), where R = R ∪ {±∞}. This forms a complete
lattice when equipped with the partial order x ⪯ y ⇔
xi ≤ yi,∀i ∈ [n]. For given weight vectors w,m ∈ Rn a
dilation δw and erosion εm from Rn

to R can be defined as
follows: δw(x) =

∨
i∈[n](xi + wi) = w⊤ ⊞ x and εm(x) =

i1

i2
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Fig. 1. Proposed network structure, preceded by a CNN backbone, for the
case of MTAT and CIFAR; ReLU activations have been replaced by a sparse
morphological layer. Each MP has on average 2 input weights (red).∧

i∈[n](xi + mi) = m⊤ ⊞′ x. A max-plus Morphological
Perceptron (MP) [25] is simply a biased vector dilation, i.e.
MPw(x) = w0 ∨ δw[1:](x) = w0 ∨

∨
i∈[n](xi+wi). Similarly,

a min-plus MP is a biased vector erosion. These perceptrons
resemble linear perceptrons, but with summation replaced by
max or min and multiplication replaced by ordinary addi-
tion. Another variant, the Dilation-Erosion Perceptron (DEP),
trained using the Convex-Concave Procedure [3], takes a
convex combination of a dilation and an erosion.

MPs can be treated as building blocks for the construction
of more complex networks, termed as Morphological Neural
Networks (MNNs) [23], [24]. A max-plus MP-based network
is recursively defined as x(n) = f (n)(w

(n)
0 ∨W(n)⊞x(n−1)),

where w
(n)
0 is the bias vector, W(n) is the weight matrix, and

f (n) is an activation function.

III. PROPOSED METHOD

Before we proceed with our proposed method, we study
ReLU activated and maxout networks, showing how these can
be expressed by combining a linear and a morphological layer.

ReLU networks: A fully connected ReLU activated net-
work can be recursively defined as follows:

x(n) = max(A(n)x(n−1) + b(n),0), (1)

with the maximum operation applied element-wise. We have:

x
(n)
i = 0∨ ((A(n)x(n−1))i+ b

(n)
i )∨

∨

j ̸=i

((A(n)x(n−1))j −∞).

We may write this network in the following equivalent form:

y(n) = A(n)x(n−1),

x(n) = diagmp(b
(n)
i )⊞ y(n) ∨ 0 = W

(n)
ReLU ⊞ y(n) ∨ 0,

where diagmp denotes the max-plus diagonal matrix; i.e. off-
diagonal elements equal to −∞. The above form shows that
any biased ReLU activated fully connected linear layer can be
written as an unbiased linear layer, followed by a zero-biased
max-plus morphological layer with diagonal weight matrix.

Maxout networks: A fully connected maxout network [8]
with a pooling of K (number of affine terms) and Nn maxout
units in the n-th layer can be recursively defined as follows:

x(n) = max
k∈[K]

(A
(n)
k x(n−1) + b

(n)
k ),
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where the maximum operation is applied element-wise. Define

A(n) =
[
(A

(n)
1 )⊤, · · · , (A(n)

K )⊤
]⊤

,

w(n) =
[
(b

(n)
1 )⊤, · · · , (b(n)

K )⊤
]⊤

.

Then, the network can equivalently be defined as follows:

g(n) = A(n)x(n−1) +w(n),

x
(n)
i = max

k∈[K]
(g

(n)
i+(k−1)Nn

). (2)

This form shows that maxout networks are effectively a linear
layer followed by max-pooling. Notice that we may write

x
(n)
i = max

k∈[K]
((A(n)x(n−1))i+(k−1)Nn

+ w
(n)
i+(k−1)Nn

)

= max
j=i+(k−1)Nn

((A(n)x(n−1))j + w
(n)
j )

∨ max
j ̸=i+(k−1)Nn

((A(n)x(n−1))j −∞)

Hence, we may write this network in the following form:

y(n) = A(n)x(n−1),

x(n) =
(
W

(n)
1 · · · W

(n)
K

)
⊞ y(n) = W

(n)
maxout ⊞ y(n),

where
W

(n)
k = diagmp(b

(n)
ki ).

The above form shows that any fully connected maxout linear
layer can be written as an unbiased linear layer, followed by an
unbiased max-plus morphological layer with a weight matrix
formed by the concatenation of multiple diagonal matrices.

Max-plus block: Introduced in [31], the max-plus block
(with the inclusion of a morphological bias) generalizes the
aforementioned structures by relaxing the constrained forms
of the weight matrix and bias. Analytically, a network of max-
plus blocks can be recursively defined as follows:

y(n) = A(n)x(n−1),

x(n) = W(n) ⊞ y(n) ∨w
(n)
0 .

The weight matrices A(n),W(n) and bias w
(n)
0 are general

weight matrices and bias. From our previous analysis, we see
that the max-plus block network is a generalization of ReLU
and maxout networks, and hence it immediately follows that it
is a universal approximator [31]. Notice that a max-plus block
is effectively a maxout layer, where the linearities are shared
across all outputs, achieving greater effective pooling.

Our method: Our proposal is twofold: 1) We propose a new
means of constructing hybrid linear-morphological topologies,
which maintains test performance and is amendable to pruning,
and, more importantly, 2) we propose a new constraint on the
form of the max-plus block, where the morphological layer is
explicitly defined to be sparse.

Proposal 1): Most existing works focus on replacing linear
layers with morphological layers, in order to keep parameter
count constant. For example, in [31], the authors replace the

TABLE I
TEST PERFORMANCE OF DIFFERENT METHODS ON MTAT

Method ROC-AUC ↑ PR-AUC ↑

ReLU 0.9149 ± 0.0005 0.4632 ± 0.0023
Maxout 0.9148 ± 0.0003 0.4626 ± 0.0021
Zhang et al. [31] 0.5000 ± 0.0000 0.0653 ± 0.0000
Dense-Morph 0.9127 ± 0.0013 0.4553 ± 0.0010
Sparse-Morph (ours) 0.9152 ± 0.0002 0.4646 ± 0.0020

final linear layer with a max-plus layer, turning a linear-
ReLU-linear topology to a linear-ReLU-morphological one.
By contrast, we leave the linear layers as are, and replace ac-
tivations with additional morphological layers, turning linear-
ReLU-linear topologies into linear-morphological-linear ones.
Specifically, if we are given a linear-ReLU layer as defined in
(1) with nout outputs, i.e. A(n) ∈ Rnout×nin , then we get rid of
the ReLU layer and the linear bias, and add a morphological
layer with W(n) ∈ Rnout×nout ,w

(n)
0 ∈ Rnout , forming a max-

plus block. If we are given a maxout layer as defined in (2)
with nout outputs and pooling of K, i.e. A(n) ∈ RKnout×nin ,
then we get rid of the maxout pooling layer and the linear
bias, set a new linear layer with Ã(n) ∈ Rnout×nin and no
linear bias, and a new morphological layer with W(n) ∈
Rnout×nout ,w

(n)
0 ∈ Rnout , forming a max-plus block.

Proposal 2): The max-plus block of [31] defines a dense
morphological layer, where each output has an effective pool-
ing equal to the dimension of the input of the morphological
layer. Instead, we propose that the morphological layer of
the max-plus block be explicitly sparse. Specifically, for a
morphological layer with nout outputs and inputs (as defined in
Proposal 1), we explicitly initialize all but K ·nout weights to
−∞, which renders them inactive throughout training. K is the
effective pooling we wish each output to have on average. This
means that we have the same effective pooling as a maxout
network, but with a reduced linear layer of size nout instead
of K · nout (see Proposal 1). In practice, we take K = 2.
We should note that Proposal 2 eliminates the vast majority
of additional parameters that Proposal 1 introduces.

Our method is illustrated in Fig. 1, where the ReLU acti-
vations of a linear-ReLU-linear topology have been replaced
by a sparse morphological layer with K = 2. On average,
each MP has 2 active inputs; in contrast to maxout layers, the
number of active inputs differs throughout each unit, whereas
the same input can be fed into multiple units.

IV. EXPERIMENTS

Experimental Setup: Our goal is threefold: 1) to ensure
that including morphological layers, particularly sparse ones,
in state-of-the-art architectures does not degrade test perfor-
mance, 2) to show that they contribute to accelerated training,
and 3) to examine whether maxout, max-plus block, and our
sparse max-plus block networks improve network prunability.

We conduct experiments on the MTAT dataset [14], a widely
used benchmark in music tagging [30], containing 25,863
annotated 29-sec song excerpts. Following prior work [15],
we evaluate on the top 50 tags using the default splits. We
also evaluate our method on CIFAR-10 [13], which consists
of 60,000 32 × 32 RGB images, distributed into 10 classes.
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TABLE II
RESULTS ON CIFAR-10

Pruning ratio Test Accuracy (%)

r2 r1 (params) ReLU Maxout Dense-Morph Sparse-Morph

Original 78.98 ± 0.76 78.17 ± 0.86 77.78 ± 0.72 78.32 ± 0.50
0.7 0.7 (41380) 69.57 ± 3.38 34.89 ± 6.62 29.83 ± 11.16 74.13 ± 2.14
0.7 0.8 (28273) 55.03 ± 6.49 23.25 ± 4.86 21.61 ± 8.35 66.10 ± 4.02
0.7 0.9 (15166) 27.78 ± 5.84 15.41 ± 5.24 17.14 ± 4.02 34.16 ± 10.41
0.8 0.7 (40868) 62.36 ± 3.83 34.42 ± 4.77 24.83 ± 9.63 72.40 ± 2.33
0.8 0.8 (27761) 43.33 ± 5.99 22.08 ± 3.79 19.66 ± 8.48 62.51 ± 4.60
0.8 0.9 (14654) 20.54 ± 6.58 14.24 ± 4.31 17.03 ± 6.46 30.73 ± 8.90
0.9 0.7 (40356) 44.77 ± 4.86 35.34 ± 3.23 19.61 ± 6.45 70.31 ± 3.02
0.9 0.8 (27249) 26.80 ± 4.56 23.76 ± 1.42 14.68 ± 4.34 58.20 ± 7.24
0.9 0.9 (14142) 14.91 ± 3.93 15.85 ± 3.78 13.93 ± 3.81 28.57 ± 12.26
0.95 0.7 (40100) 36.49 ± 1.45 32.21 ± 2.39 22.11 ± 7.63 67.36 ± 2.85
0.95 0.8 (26993) 22.53 ± 4.74 23.85 ± 2.78 17.42 ± 5.79 54.92 ± 5.93
0.95 0.9 (13886) 13.27 ± 3.04 16.87 ± 5.54 14.53 ± 3.92 25.88 ± 7.63

Our base model is the short-chunk CNN [30], which
processes log-mel spectrograms (3.69 sec length – 96 mel
bands – 512-sample windows, 256-sample hop) and consists
of a 7-layer convolutional backbone followed by a two-layer
linear-ReLU-linear classification head, which we replace with
a linear-morphological-linear design. The first FC layer (512
neurons) receives a 512-dimensional input, and the final layer
has 50 output neurons. The intermediate morphological layer
has size 512 × 512 with mostly inactive parameters. For
CIFAR, we reduce the number of convolutional layers to five.

We compare five classification heads: 1) ReLU-based MLP
– a standard linear-ReLU-linear structure as in [30], 2)
Maxout-based MLP – replacing the first ReLU layer with a
maxout layer (pooling factor K = 2), 3) Zhang et al. [31]
- replacing the final linear layer with a morphological layer,
as proposed in [31] for their CIFAR architecture, 4) Dense-
Morph-based MLP, replacing the first linear-ReLU layer with a
dense linear-morphological layer (Proposal 1), and 5) Sparse-
Morph-based MLP, which further constrains the morphological
layer to be sparse (Proposals 1 & 2). We incorporated Batch
Normalization in all classification heads, with the exception
of (4) on MTAT, where its removal led to smoother training.

Training is performed from scratch. For CIFAR-10 we train
using Adam for 10 epochs with a learning rate of 0.001 and
a random 80-20 train-validation split. For MTAT we train for
100 epochs, using Adam [12] with a learning rate of 0.0001 for
the first 80 epochs, and SGD with Nesterov momentum (0.9)
and a learning rate of 0.001 for 20 epochs. Weight decay is set
to 0.0001. The model with the lowest validation loss is selected
for testing. We train 5 models for each method, reporting the
mean and standard error of the ROC-AUC, PR-AUC scores
(MTAT) or classification accuracy (CIFAR-10) in the testing
split; for MTAT, excerpt-wise scores are obtained by averaging
the per-spectrogram network outputs.

Test Performance: First, we verify that the inclusion of
morphological layers does not significantly degrade test ac-
curacy. We report on the results of fully-trained, non-pruned
networks in MTAT. Table I shows that models that follow
Proposal 1 achieve comparable results to ReLU and Maxout
networks. In addition, the model following both Proposals 1
and 2, i.e. our Sparse-Morph-based, marginally achieves the
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Fig. 2. Error plot of validation ROC-AUC and PR-AUC scores of different
methods on MTAT for the first 25 epochs of training; x-axis in log-scale.

best performance out of all the models.
Pruning Experiments: We evaluate prunability via unstruc-

tured L1 pruning on the FC layers. Networks following Pro-
posal 1 are pruned based on L1 norm (linear layers) or absolute
magnitude (morphological layers, with pruned weights set to
−∞). We prune the last linear layer with a pruning ratio of
r2 and the remaining layers of the classification head with
r1. To ensure equal parameter counts, we make the following
adjustments: 1) For the maxout network, whose linear layer
is twice the size of the ReLU network, we prune at a pruning
ratio r′1 = 1 − (1 − r1)/2, and an additional 512 parameters
due to the biases. 2) For the Dense-Morph network, which
has 1 linear and 1 morphological FC layer, we prune each at
a pruning ratio r′1 = 1− (1− r1)/2. 3) For the Sparse-Morph
network, which has 2 · 512 additional parameters, we prune
this many additional parameters from the first linear layer.

Tables II & III show that our sparse max-plus block net-
works achieve significantly better pruning performance than
ReLU networks. This also holds true for the Maxout and
Dense-Morph networks in MTAT (where Sparse-Morph net-
work performs best in ROC-AUC, while Maxout and Sparse-
Morph achieve similar PR-AUC scores), as well as in CIFAR
under high pruning ratios; for other ratios, ReLU outperforms
other morphological variants. Since weights are mostly (in
fact, for the Maxout and Sparse-Morph networks, solely)
pruned from the preceding linear layers, it is implied that
morphological layers are not only sparse themselves but also
induce sparsity in adjacent linear layers.

Speed of Convergence: Lastly, we compare the initial con-
vergence speed of our models (Fig. 2) in MTAT. We observe
that our Sparse-Morph model achieves faster validation score
improvements in the first 25 epochs; in contrast, Dense-Morph
is slower to converge than the ReLU-based baseline. This
could prove useful in hyperparameter optimization, where the
models are trained only for a few epochs.
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TABLE III
PRUNING PERFORMANCE OF DIFFERENT METHODS FOR A VARIETY OF PRUNING RATIOS r1, r2 ON MTAT

Pruning ratio ReLU Maxout Dense-Morph. Sparse-Morph. (ours)

r2 r1 (#params) ROC-AUC ↑ PR-AUC ↑ ROC-AUC ↑ PR-AUC ↑ ROC-AUC ↑ PR-AUC ↑ ROC-AUC ↑ PR-AUC ↑

0.8

0.8 (58111) 0.9048 ± 0.0006 0.4278 ± 0.0014 0.9116 ± 0.0014 0.4530 ± 0.0022 0.9023 ± 0.0043 0.4304 ± 0.0046 0.9125 ± 0.0008 0.4585 ± 0.0026
0.9 (31897) 0.9045 ± 0.0006 0.4247 ± 0.0026 0.9100 ± 0.0015 0.4501 ± 0.0023 0.9005 ± 0.0034 0.4232 ± 0.0043 0.9119 ± 0.0009 0.4563 ± 0.0022
0.95 (18790) 0.9034 ± 0.0006 0.4212 ± 0.0047 0.9068 ± 0.0010 0.4440 ± 0.0021 0.8979 ± 0.0031 0.4171 ± 0.0045 0.9102 ± 0.0012 0.4514 ± 0.0035
0.98 (10925) 0.8995 ± 0.0011 0.4099 ± 0.0069 0.8988 ± 0.0015 0.4282 ± 0.0050 0.8939 ± 0.0034 0.4090 ± 0.0059 0.9058 ± 0.0019 0.4397 ± 0.0052

0.9

0.8 (55551) 0.8911 ± 0.0024 0.4039 ± 0.0049 0.9000 ± 0.0011 0.4466 ± 0.0024 0.8914 ± 0.0068 0.4128 ± 0.0072 0.9074 ± 0.0028 0.4480 ± 0.0039
0.9 (29337) 0.8901 ± 0.0033 0.4001 ± 0.0072 0.8983 ± 0.0013 0.4427 ± 0.0028 0.8910 ± 0.0054 0.4096 ± 0.0053 0.9064 ± 0.0030 0.4454 ± 0.0033
0.95 (16230) 0.8892 ± 0.0029 0.3961 ± 0.0082 0.8950 ± 0.0010 0.4363 ± 0.0020 0.8899 ± 0.0045 0.4067 ± 0.0045 0.9046 ± 0.0032 0.4401 ± 0.0047
0.98 (8365) 0.8836 ± 0.0048 0.3807 ± 0.0106 0.8885 ± 0.0011 0.4214 ± 0.0036 0.8871 ± 0.0045 0.4004 ± 0.0061 0.8993 ± 0.0041 0.4258 ± 0.0040

0.95

0.8 (54271) 0.8647 ± 0.0017 0.3630 ± 0.0034 0.8943 ± 0.0011 0.4392 ± 0.0030 0.8730 ± 0.0083 0.3938 ± 0.0087 0.8965 ± 0.0058 0.4325 ± 0.0037
0.9 (28057) 0.8627 ± 0.0041 0.3585 ± 0.0060 0.8923 ± 0.0009 0.4344 ± 0.0035 0.8730 ± 0.0064 0.3919 ± 0.0071 0.8952 ± 0.0061 0.4292 ± 0.0033
0.95 (14950) 0.8602 ± 0.0047 0.3477 ± 0.0092 0.8882 ± 0.0013 0.4271 ± 0.0047 0.8725 ± 0.0052 0.3892 ± 0.0059 0.8930 ± 0.0066 0.4223 ± 0.0039
0.98 (7085) 0.8506 ± 0.0061 0.3289 ± 0.0150 0.8789 ± 0.0019 0.4072 ± 0.0042 0.8692 ± 0.0037 0.3831 ± 0.0051 0.8866 ± 0.0074 0.4040 ± 0.0039

0.98

0.8 (53503) 0.7820 ± 0.0083 0.2732 ± 0.0044 0.8398 ± 0.0101 0.3919 ± 0.0086 0.8058 ± 0.0129 0.3401 ± 0.0149 0.8737 ± 0.0072 0.3951 ± 0.0086
0.9 (27289) 0.7797 ± 0.0092 0.2680 ± 0.0063 0.8361 ± 0.0100 0.3836 ± 0.0057 0.8061 ± 0.0120 0.3402 ± 0.0114 0.8719 ± 0.0077 0.3917 ± 0.0088
0.95 (14182) 0.7755 ± 0.0069 0.2606 ± 0.0119 0.8302 ± 0.0088 0.3736 ± 0.0063 0.8060 ± 0.0109 0.3382 ± 0.0088 0.8683 ± 0.0081 0.3807 ± 0.0080
0.98 (6317) 0.7695 ± 0.0057 0.2479 ± 0.0093 0.8147 ± 0.0094 0.3462 ± 0.0095 0.8033 ± 0.0103 0.3317 ± 0.0063 0.8584 ± 0.0084 0.3565 ± 0.0084

V. CONCLUSION

We explored hybrid linear-morphological architectures and
introduced a method to integrate max-plus blocks while pre-
serving test performance. By replacing activation layers with
morphological layers and sparsifying them via −∞ initial-
ization, we achieved the best test performance in MTAT and
faster initial convergence, More importantly, we show that
morphological layers induce sparsity in linear components,
making hybrid networks—including maxout and max-plus
variants—more prunable. Our findings highlight the potential
of morphological layers for improving efficiency, convergence,
and compression in neural networks; future work could focus
in applying these principles under large-scale settings.
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