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Abstract—This work introduces a novel biorthogonal tunable
wavelet unit constructed using a lifting scheme that relaxes
both the orthogonality and equal filter length constraints, pro-
viding greater flexibility in filter design. The proposed unit
enhances convolution, pooling, and downsampling operations,
leading to improved image classification and anomaly detection
in convolutional neural networks (CNN). When integrated into
an 18-layer residual neural network (ResNet-18), the approach
improved classification accuracy on CIFAR-10 by 2.12% and on
the Describable Textures Dataset (DTD) by 9.73%, demonstrating
its effectiveness in capturing fine-grained details. Similar im-
provements were observed in ResNet-34. For anomaly detection
in the hazelnut category of the MVTec Anomaly Detection
dataset, the proposed method achieved competitive and well-
balanced performance in both segmentation and detection tasks,
outperforming existing approaches in terms of accuracy and
robustness.

Index Terms—Anomaly detection, Computer vision, Discrete
wavelet transforms, Feature extraction, Image processing, Image
recognition, Machine learning, Supervised learning, Wavelet
coefficients, Wavelet transform.

I. INTRODUCTION

Max pooling, a key component in CNN architectures such
as ResNets [1], emphasizes dominant features but discards
fine details, leading to aliasing artifacts [2]. While frequency-
based methods [3], [4] focus on low-frequency components,
wavelet-based models like WaveCNet [5] predominantly use
low-pass filters. However, models such as Wavelet-Attention
CNNs [6] incorporates both coarse and fine-grained details,
which is crucial for high-resolution image processing.

As depicted in Fig. 1, the CIFAR-10 dataset [7] pre-
dominantly consists of low-frequency information, whereas
MVTecAD [8], [9] and DTD [10] exhibit features distributed
across both low- and high-frequency domains. In the ”cracked”
DTD sample shown in the second column of Fig. 1, the
low-pass component Xll retains only minimal texture de-
tails, whereas the high-pass components Xhl, Xlh, and Xhh

effectively capture its distinctive features. This underscores
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Fig. 1. From left to right, wavelet (Haar) and frequency representations
of the samples from CIFAR10 (first column), DTD (second column), and
MVTecAD (third column). The original images (top row) are shown with
its frequency representation (middle row) and wavelet representation (bottom
row). Xll, Xlh, Xhl, and Xhh show the coarse approximation and details
wavelet representations.

the importance of maintaining both high- and low-frequency
information within CNN architectures. Previous studies [11],
[12] used wavelet decomposition and perfect reconstruction to
retain full image information, improving performance. While
tunable wavelet filters [11], [12] enhanced CNNs, especially
for high-frequency images, they rely on orthogonal wavelets

Fig. 2. Two-channel filter bank architecture.
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Fig. 3. The analysis of a biorthogonal filter bank constructed with lifting
scheme. Pk(z) is the lifting step function for k in the range from 1 to N .

and require equal filter lengths. To overcome these limitations,
we propose a biorthogonal tunable wavelet unit based on a
lifting scheme (LS-BiorUwU), which relaxes these constraints,
allowing greater design flexibility. Integrated into ResNet
architectures, the proposed unit improves classification on
CIFAR-10 and DTD and serves as a feature extractor in
the CFLOW-AD anomaly detection pipeline [13], tested on
the hazelnut category of MVTecAD [8], [9]. Our approach
enhances CNN performance in both image classification and
anomaly detection. In summary:

• We propose LS-BiorUwU, a novel biorthogonal tunable
wavelet unit based on the lifting scheme that relaxes the
orthogonality and equal filter length constraints imposed
by existing orthogonal wavelet units.

• We integrate the proposed unit into ResNet architectures
trained on CIFAR-10 and DTD, achieving strong classi-
fication performance, especially on DTD.

• We incorporate the unit into the CFLOW-AD anomaly
detection model and evaluate it on the MVTecAD dataset.

II. RELATED WORKS

Max pooling in CNNs downsamples feature maps by se-
lecting maximum values, preserving key features [14], [15].
However, without filtering, it introduces aliasing artifacts,
leading to frequency overlap and Moiré patterns [2], and can
distort object structures in deeper networks [5]. Wavelet-based
methods apply discrete wavelet transforms (DWT, FWT) to

Fig. 4. Diagram of low-pass and high-pass component implementation. The
signal goes from left to right. The results from DWT go to ReLU functions
to become the inputs of a one-layer FCN. Because an FCN can take inputs
of arbitrary sizes, the one-layer FCN can read the decomposed components
and finetune the trainable coefficients to optimally combine the decomposed
components. The fine-tuned one-layer FCN combines the inputs to find the
optimal feature map.

Fig. 5. Implementation of the proposed unit in CNN architecture, replacing
max-pool (a), stride-convolution (b), and downsampling (c) functions.

process features in the wavelet domain [16], [17], improving
image classification [5], [6], [18]. Existing approaches rely on
predefined wavelet functions, primarily using approximation
components [5], with limited reconstruction from higher-order
decompositions. Wavelet-Attention CNN [6] incorporates at-
tention maps from detail components. Trainable wavelet filters,
such as those in [11], relaxed perfect reconstruction con-
straints, while the units in [12] enforced an orthogonal lattice
structure. However, these methods rely on orthogonal wavelets
and require equal filter lengths.

To address these limitations, we propose a biorthogonal
tunable wavelet unit based on a lifting scheme, which removes
these constraints and enables greater flexibility in wavelet
design.

III. PROPOSED METHOD

A. Lifting Scheme for Tunable Biorthogonal Wavelet Filters
Using a lifting scheme, the tunable biorthogonal wavelet

unit (LS-BiorUwU) relaxes the constraint of orthogonality to
biorthogonality and allows unequal filter lengths in the filter
bank of the wavelet unit.

In the filter bank structure demonstrated in Fig. 2, the
analysis, shown in the blue rectangle box, and synthesis,
shown in the red rectangle box, parts of the filter bank
have the function of decomposing and reconstructing signals,
respectively. H0 and H1 are, correspondingly, low-pass and
high-pass filters for the analysis part of the filter bank; whereas
F0 and F1 are, respectively, low-pass and high-pass filters
for the synthesis part of the filter bank. With L taps, H0

and H1 have h0 = [h0(0), h0(1), ..., h0(L − 1)] and h1 =
[h1(0), h1(1), ..., h1(L− 1)] as their coefficients, respectively.
In orthogonal wavelets, h0 and h1 are required to have the
same length and are related. This requirement can be relaxed
if the filter bank is constructed with a lifting scheme from an
orthogonal wavelet. Hence, H0 and H1 can be represented as
a matrix multiplication as follows:[

H0(z)
H1(z)

]
=

[
ĤN

0 (z)

ĤN
1 (z)

]
=

[
1 0

PN (z2) 1

] [
1 0
0 z−2

]
· · ·

[
1 0

P1(z
2) 1

] [
1 0
0 z−2

][
Ĥ0

0 (z)

Ĥ0
1 (z)

]
, (1)

in which ĤN
0 (z) and ĤN

1 (z) are the final filter pairs con-
structed after N lifting steps from the Ĥ0

0 (z) and Ĥ0
1 (z) pair of
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TABLE I
THE RECURSIVE IMPLEMENTATION OF THE LIFTING SCHEME FOR 1 AND 2 LIFTING STEPS IS TESTED BY COMPARING ITS H0 AND H1 COEFFICIENTS

WITH THOSE OF BIOR1.3 AND BIOR1.5.

1 Lifting Step
Recursive Lifting Scheme h0 0.7071, 0.7071

h1 -0.0880, -0.0880, 0.7071, -0.7071, 0.0880, 0.0880

Bior1.3 Ground-Truth h0 0.7071, 0.7071
h1 -0.0880, -0.0880, 0.7071, -0.7071, 0.0880, 0.0880

2 Lifting Steps
Recursive Lifting Scheme h0 0.7071, 0.7071

h1 0.0166, 0.0166, -0.1215, -0.1215, 0.7071, -0.7071, 0.1215, 0.1215, -0.0166, -0.0166

Bior1.5 Ground-Truth h0 0.7071, 0.7071
h1 0.0166, 0.01666, -0.12156, -0.12156, 0.70716, -0.70716, 0.12156, 0.12156, -0.01666, -0.0166

an orthogonal wavelet. In addition, for k in the range from 1 to
N , Pk(z) is the lifting step function, which can be represented
as follows:

Pk(z) = −ak + akz
−2k for k in [1, N ], (2)

where ak is the tunable parameter in the biorthogonal wavelet
unit. The lifting scheme can be visualized in Fig. 3. In addition,
the proposed tunable biorthgonal wavelet with lifting scheme
can be implemented as the following recursive algorithm:[

Ĥk
0 (z)

Ĥk
1 (z)

]
=

[
1 0

Pk(z
2) 1

] [
1 0
0 z−2

][
Ĥk−1

0 (z)

Ĥk−1
1 (z)

]

=

[
Ĥk−1

0 (z)

−akĤ
k−1
0 (z) + z−2Ĥk−1

1 (z) + akz
−4kĤk−1

0 (z)

]
, (3)

for k in the range from 1 to N . In this work, Haar or Bior1.1
is used for Ĥ0

0 (z) and Ĥ0
1 (z) initialization.

B. 2D Implementation

From the coefficients h0 and h1, the high-pass and low-
pass filter matrices H and L are derived to compute the
approximation component Xll and the detail components Xlh,
Xhl, and Xhh of the input X. The matrix L is computed as
follows:

L = DĤ, (4)

where D denotes the downsampling matrix, and Ĥ is a Toeplitz
matrix formed using the filter coefficients of H0(z). The matrix
H follows the same structure as L but is derived from the filter
coefficients of H0(z

−1). Using H and L, the components Xll,
Xlh, Xhl, and Xhh are computed as follows:

Xll = LXLT , Xlh = HXLT ,

Xhl = LXHT , Xhh = HXHT .
(5)

C. Implementation in CNN architectures

The proposed units were incorporated into ResNet family
architectures. In downsampling and pooling layers, the UwU
is followed by a one-layer fully connected network (FCN),
as depicted in Fig. 4. Furthermore, the stride-2 convolution is
replaced with a non-stride convolution block, followed by the
proposed LS-BiorUwU, as shown in Fig. 5.

IV. EXPERIMENTS AND RESULTS

This section integrates the proposed LS-BiorUwU unit into
CNN architectures. First, the lifting scheme implementation
for initialization is examined, followed by an analysis of the
frequency response of the tuned coefficients. Next, the unit
is applied to ResNet18 (tested on CIFAR-10 and DTD with
1, 2, and 3 lifting steps) and ResNet34 (with 1, 2, and 3
lifting steps). Finally, its effectiveness is evaluated within the
CFLOW-AD pipeline for anomaly detection on the Hazelnut
class in the MVTecAD dataset.

A. Lifting Scheme for Tunable Biorthogonal Wavelet Filters
Coefficient Analysis

This section examines the recursive implementation of
the lifting scheme for LS-BiorUwU, starting from the
Haar/Bior1.1 wavelet with 1 and 2 lifting steps. Higher lifting
steps are not considered due to diminishing returns in clas-
sification improvement. The coefficients used are a1 = 880

7071
for 1 step and a1 = 405

2357 , a2 = −166
7071 for 2 steps. Table

I shows that the resulting h0 and h1 closely match Bior1.3
and Bior1.5, confirming the proposed scheme’s ability to
construct biorthogonal wavelets with correct lifting steps and
initial orthogonal wavelet filters. The LS-BiorUwU unit is then
integrated into a ResNet18 pooling layer trained on CIFAR-
10, and its 2-step version (LS-BiorUwU-2Step) is analyzed.
As shown in Fig. 6, the tuned H1 filter retains high-pass
characteristics.

B. Image Classification: CIFAR10 and DTD

This section evaluates the performance of LS-BiorUwU
units with 1, 2, and 3 lifting steps in ResNet architectures on
CIFAR-10 and DTD. CIFAR-10 [7] consists of 60,000 low-
resolution (32×32) color images across 10 classes, with 50,000
for training and 10,000 for testing. In contrast, DTD [10]
(Describable Textures Dataset) includes 5,640 high-resolution
images across 47 categories, emphasizing rich textures and
high-frequency details. The LS-BiorUwU units were primarily
tested on ResNet18 and compared to the tunable orthog-
onal lattice wavelet unit (OrthLatt-UwU) with 2-tap filters
initialized with Haar/Bior1.1 [12]. For LS-BiorUwU-1Step
and LS-BiorUwU-2Step, Bior1.3 and Bior1.5 filter coefficients
were used to determine a1 and a2 for initialization. For LS-
BiorUwU-3Step, the a1 and a2 values from LS-BiorUwU-
2Step were used, while a3 was set to a value near zero for
initialization.
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Fig. 6. Frequency Response Analysis of the Bior1.5 H1 (left) and the tuned coefficients of H1 of LS-BiorUwU after 2 lifting steps (right).

TABLE II
ACCURACY OF LS-BIORUWU WITH 1, 2 AND 3 LIFTING STEPS, ALONG

WITH ORTHLATT-UWU-2TAP EVALUATED ON RESNET18 FOR DTD AND
CIFAR10.

DTD
Baseline: 33.99%

OrthLatt-UwU-2Tap LS-BiorUwU-1Step LS-BiorUwU-2Step LS-BiorUwU-3Step
40.37% 42.71% 43.67% 43.72%

CIFAR10
Baseline: 92.44%

OrthLatt-UwU-2Tap LS-BiorUwU-1Step LS-BiorUwU-2Step LS-BiorUwU-3Step
94.97% 94.08% 94.56% 94.39%

1) ResNet18: LS-BiorUwU with 1, 2, and 3 lifting steps
was implemented in ResNet18 and tested on CIFAR-10 and
DTD, representing datasets with low-resolution, low-pass fea-
tures and high-resolution, high-pass details, respectively. As
shown in Table II, LS-BiorUwU-ResNet18 outperformed the
baseline ResNet18 across all lifting step initializations. While
LS-BiorUwU did not surpass OrthLatt-UwU-2Tap on CIFAR-
10, it showed a clear advantage on DTD. Nevertheless, it
shows that the proposed LS-BiorUwU can still perform well
on low-resolution data.

For DTD, which contains high-resolution images with de-
tailed features, increasing the lifting steps and the order of
the high-pass filter led to better results. Since OrthLatt-UwU-
2Tap (Bior1.1/Haar) and LS-BiorUwU (1, 2, and 3 lifting
steps) share the same 2-Tap low-pass filter length, adding
more lifting steps improved DTD accuracy by increasing the
order of the high-pass filter. However, LS-BiorUwU-3Step
provided only limited improvement over LS-BiorUwU-2Step,
likely due to suboptimal initialization in LS-BiorUwU-3Step.
These results suggest that LS-BiorUwU maintains competitive
performance on low-resolution datasets, while demonstrating
superior accuracy on high-resolution images that contain rich
details and high-frequency features—benefiting from the use

TABLE III
ACCURACY OF LS-BIORUWU WITH 1, 2 AND 3 LIFTING STEPS, ALONG

WITH ORTHLATT-UWU-2TAP EVALUATED ON RESNET34 FOR DTD AND
CIFAR10.

DTD
Baseline: 24.47%

OrthLatt-UwU-2Tap LS-BiorUwU-1Step LS-BiorUwU-2Step LS-BiorUwU-3Step
41.49% 41.76% 41.76% 42.45%

CIFAR10
Baseline: 94.33%

OrthLatt-UwU-2Tap LS-BiorUwU-1Step LS-BiorUwU-2Step LS-BiorUwU-3Step
95.44% 94.45% 94.56% 94.36%

of higher-order high-pass filters.
2) Extended Study with ResNet34: In this section, LS-

BiorUwU with 1, 2, and 3 lifting steps was implemented
in ResNet34, tested on CIFAR-10 and DTD, and compared
against the baseline ResNet34 and OrthLatt-UwU-2Tap. As
shown in Table III, while LS-BiorUwU achieves comparable
performance on CIFAR-10, it consistently outperforms both
baseline ResNet34 and OrthLatt-UwU-2Tap ResNet34 at every
lifting step on DTD. Additionally, increasing the number of
lifting steps leads to better performance, aligning with the
trends observed in the ResNet18 experiments. This suggests
that the performance gains of LS-BiorUwU extend to deeper
neural network architectures as well.

TABLE IV
SEGMENTATION AND DETECTION AUROCS OF CFLOW-AD PIPELINE

WITH THE BASELINE RESNET18, ORTHLATT-UWU-2TAP, AND
LS-BIORUWU-2STEP ENCODERS FOR HAZELNUT CATEGORY IN

MVTECAD.

Models SegAUROC DetAUROC
Baseline [12] 96.45% 92.46%
OrthLatt-UwU-2Tap [12] 97.20% 89.21%
LS-BiorUwU-2Step 97.21% 92.11%
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Fig. 7. Anomaly detection on hazelnut objects from the MVTec AD dataset
with two examples. From left to right: the first column presents the mask
and input image, while the second to fourth columns display heatmaps and
defect segmentation results from the baseline, OrthLatt-UwU-2Tap, and LS-
BiorUwU-2Step, respectively.

C. Anomaly Detection: MVTecAD

In this experiment, LS-BiorUwU-2Step ResNet18, trained
on the DTD dataset, was used as an encoder in the CFLOW-
AD pipeline [13] for anomaly detection on hazelnut images
from the MVTecAD dataset [8], [9]. The LS-BiorUwU-
2Step ResNet18 encoder was compared against baseline
ResNet18 and OrthLatt-UwU-2Tap, as shown in Table IV.
While OrthLatt-UwU-2Tap achieved a segmentation AUROC
of 97.20%, LS-BiorUwU-2Step ResNet18 slightly outper-
formed it with 97.21%, while also achieving a significantly
higher detection AUROC of 92.11%. Fig. 7 presents heatmaps
from detection models, demonstrating that LS-BiorUwU-2Step
ResNet18 provides better segmentation and localization per-
formance compared to the baseline and OrthLatt-UwU-2Tap
encoders.

V. CONCLUSION

This study introduces a biorthogonal tunable wavelet unit
based on a lifting scheme, which removes constraints on or-
thogonality and filter length, enabling greater design flexibility
and enhancing image classification and anomaly detection
in CNNs. Results show that increasing lifting steps and the
order of the high-pass filter improves performance on high-
frequency feature images while maintaining competitive re-
sults on low-resolution datasets. Additionally, the proposed
approach balances segmentation and detection, leading to
improved anomaly detection performance. However, the study
has some limitations, as the current approach applies lifting
steps in a single direction, from the low-pass filter to the high-

pass filter, to increase the high-pass filter order. Future work
can explore a dual lifting scheme to adjust both low-pass and
high-pass filter orders, offering greater design flexibility. Ad-
ditionally, while the current tunable biorthogonal wavelet units
demonstrate good performance, their stopband attenuation can
be further improved. This can be addressed by incorporating a
stopband-attenuation constraint for better frequency selectivity
in future research.
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