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Abstract—Feature selection is a relevant and hot topic in
signal processing and machine learning, and it has gained even
more relevance in recent years. There exist many possibilities to
measure the importance of a variable for a specific task. Given
a measure of importance, we can obtain a ranking of the input
variables involved in a regression or classification problem. As a
consequence, we also need the ability to identify the best ranking
method by analyzing the results for a given task or specific data.
In this work, we describe and discuss several scoring functions
designed for evaluating the ranking methods. We test the scoring
functions in a controlled experiment with synthetic data.

Index Terms—Feature selection; feature importance; Shapley
value; ranking methods; scoring functions.

I. INTRODUCTION

Variable selection, also known as feature selection [1]-
[3],! is one of the most relevant topics in signal processing,
statistics, and machine learning. This topic has received re-
newed interest in the last few years. More specifically, the
way of defining a feature importance measure has become a
hot research topic nowadays [4]-[7]. The interest in the so-
called Shapley values is a clear example [8].

There are many ways of defining a feature’s importance in
both regression and classification problems [1], [9]. Given an
importance measure, we can build a ranking of the involved
variables, from the most important to the least important. The-
oretically speaking, the complete variable selection problem is
formed by two parts: firstly, ranking the variables and secondly
deciding the effective number of variables (see, e.g., [7], [10],
[11] for the second part). Clearly, by changing the definition
of the feature importance measure, we can obtain a different
ranking. From a research point of view, it is essential to find
the optimal ranking method (RM) for at least a specific task
and/or data type. For this goal, we need the ability to compare
RMs where a ground-truth is available (i.e., in experiments
with simulated data, for instance).

This work is devoted to describing and discussing different
possible scoring functions to “judge” the performance of
different RMs. Namely, the final goal is to rank the ranking
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methods. We start with the simplest scoring functions and in-
crease the complexity [12]-[14]. We also describe the benefits
and drawbacks of each scoring function. We also introduce
normalized versions of the scores to allow for the comparison
among different scoring functions. A simple running example
is used to facilitate the understanding of the interested reader.
We finally test all of them in a synthetic regression scenario
considering several alternative RMs [1].

II. FRAMEWORK

Suppose that we have a set of R variables x = [z, ...,7g] "

(input vector) that describes the behavior of a related variable
y (output). We assume that we have a dataset of N data pairs,
{Xn, yn })_,, and we can define a ground-truth ranking of the
input features (i.e., the components of x) in decreasing order
of importance,

Ground-truth: G = {¢1, 92, ...,9r}, (1

where g; € {1,..., R} with g; # g; for i # j, is the sub-index
associated to the variable x,, and j is the correct position of
the ranking of the variable x,,. As an example, with R = 10,
if g1 =5 and g9 = 2 it means that x5 is the most important
variable and x, is the worst variable in terms of importance.

Generally, we have several RMs that we can apply for
feature selection. Each one is implicitly or explicitly based
on a feature importance measure and provides a ranking
of the variables. We want to score these results according
to the groud-truth (when it is available, as in experiments
with artificial data). Namely, the goal is to rank the ranking
methods, e.g., discovering the best and the worst RMs for
feature selection, at least in one specific application. More
specifically, a ranking technique yields a ranking of the
features in decreasing order of importance that we denote as

Ranking: R = {ki,ks,...,kr}, 2

where k; € {1,..., R} (k; # k; for i # j), indicates the sub-
index associated to the variable xj, and ¢ is the position of
T, in the resulting ranking. We desire to “score” this ranking
according to the ground-truth.

Running example. Before starting with the description of the
possible scoring functions, we introduce an example that we
will use throughout the rest of the paper. Considering R = 5
features, and a ranking with subindices:

Example — Ground-truth: G = {3,1,2,5,4}. 3)
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Namely, the variable x3 is the most important, whereas x4 is
the least important. Moreover, in this example, we assume that
a ranking scheme provides as a result the following ranking,

Example — Ranking: R = {3,1,5,4,2}. 4

We can observe that the first two variables are correctly ranked,
whereas the last three variables have been wrongly positioned
by the employed ranking technique.
ITI. SCORING FUNCTIONS
In this section, we present different possible scoring func-
tions starting from the simplest ones in terms of complexity.
A. Baseline scores

1) Match counting: We simply count the number of correct
elements in the ranking. Let us define a binary variable

1 if  k; =gy,
Ij - . / ! (5)
Then, the final score is defined as
R
S=>1I. (6)
j=1

In the case of Gg and R, we have S = 2. We can normalize
this score by dividing by R, i.e., 0 < % < 1. We define the
normalized score as S = %.

2) Permutation distance: This scoring function is defined
as the (minimum) number of permutations one should realize
starting from R until obtaining G. Let P be the number of
permutations required. Then, the score is defined as

S=(R-1)—P. 7

This measure goes from R — 1 (perfect matching) to the worst
case scenario, which corresponds to 0. The normalized score
is, S=1-— %. In the case of the example R and Gg, we
have: S =2 and S = 0.5.

B. Distance scores

1) Distance summing: The previous scores do not take into
account the distance between the right and wrong positions,
and any errors are penalized by 1. The idea is to perform the
following steps:

-Forj=1,...R:
1) Given j, find in R the position ¢* such that k;~ = g;.
2) Compute the distance
dj =|i* = j|. )

- Finally, compute the average

1 R
D:R;dj. 9)

We want a score such that the higher its value, the better the
RM is. We can achieve this by computing

S = D" _ D, (10)

where
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where we have used d}™ = |R — 2j + 1|. Note that D™
corresponds to the worst-case scenario when the model fea-

tures are ordered the other way around in comparison to the
ground-truth. Finally, the normalized score is defined as

- S D
S= Dmax =1- PDmax (12)
In the case of the example with Gg and R we have: S = 1.6

2) Generalized weighted distance: The previous score does
not take into account the importance of each feature, and we
could also change the type of distance. A generalized distance
is considered, and to penalize more the errors in first positions,
we may assign some weights, @1, ..., wWg, such that > w; =
1. The resulting score is then

1/« 1/«

R R
S = ij(d;m)a - ijdjf . (13)
j=1 j=1
where a > 0. The normalized score is defined in the same way
as Eq. (12). To penalize more the errors in the first positions
of the ranking, we can assign weights satisfying w; > wy >
... > wg. For instance:
Rational decay: consider b = 25 the sum of 1+2+
. y 2 .
...+ R. Then we can assign the weights w; = %,wg =
%, e, WR = %. That is, each weight is proportional to
the position of the feature in the ground truth. This gives
primal importance to the first position in the ranking.
 Exponential decay: assign weights w; oc exp{—jA},

j=1,..., R, for a chosen decay rate \. This exponential
decay results in failures in the last position, typically
residual.

A drawback is that the choice of these weights is subjective.

C. Correlation based methods

A way to measure the association between ordinal datasets

is to study the correlation between their positions. In our
problem, this means studying the association between the
positions of each feature in the ground-truth set and in the
ranking set.
We denote the position of the feature ¢ in the ranking set
as rr(k;) = i (is i by definition) and the position of the
feature ¢ in the ground-truth set as rg(k;). For the sake of
illustration, Table I shows the positions of the features in the
running example.
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TABLE I
POSITION OF EACH FEATURE IN THE RUNNING EXAMPLE
Feature | Ground-truth position | Method - position
TG (kl) TR(kl) =1
ki =3 1 1
ko =1 2 2
k3 =5 4 3
ks =14 5 4
ks =2 3 5

Given the positions of the features, we can use some corre-
lation measures proposed in the literature as scoring functions
[12], [13]. In the following, we describe the Spearman and
Kendall correlations.

1) Spearman’s correlation: it is the classical Pearson corre-
lation coefficient applied to the positions. Consider the points
(rr(ki),rg(k:)), i =1,..., R (note that & (k;) = 7). Then, the
Spearman’s correlation is the Pearson correlation coefficient
over these positions, i.e.,

g_ cov[rn,rg]’

OrrOrg

(14)

where cov denotes the covariance of the data rr,rg and o,
Oy, their standard deviations. Note that —1 < .S < 1. It can
be easily shown that in our running example:

S=0.7.

For the sake of illustration, we have plotted the pairs
(rr(ki),rg(k;)), ¢ = 1,...,R in Figure 1. A clear positive
association between the positions can be observed, resembling
the obtained result S = 0.7. Generally, a value of 1 means a
totally correct model, a value of —1 is an incorrect model
with variables positioned the other way around, and a value
of 0 means a nominal random association. In case a RM has
very low performance, being worse than a random ranking
assignment, we can assign any negative values of Spearman
correlation to 0, in order to avoid negative scores.

2) Kendall correlation: this method computes the so-called
Kendall correlation, which measures the correlation by com-
puting the number of concordant pairs. Two pairs of obser-
vations (rr(k;),r=(k;)) and (rg(k;),rg(k;)) are concordant
if either r»(k;) > rg(k;) and rr(k;) > rg(k;) both holds
simultaneously, or rg(k;) < rg(k;) and rr(k;) < rg(k;)
holds jointly. Specifically, this correlation computes the dif-
ference between the number of concordant pairs and the ones
that are not, normalized by the number of total pairs (12%):

n° concordant pairs - n° discordant pairs

R

(2)
In Table II, we show the calculation of the Kendall correlation
for the running example, giving the result of S = 0.6.

Since the maximum number of concordant pairs is (?)
and the same holds for the number of discordant pairs, the
Kendall correlation is also bounded in the interval [—1,1].
Both Kendall and Spearman correlations are special cases of
a more general concept called generalized rank correlations

S:
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Fig. 1. Association between ground-truth and running example. x-axis
represents the position of features in the method, whereas y-axis is the position
of features in the ground-truth. The line represents a perfect association,
whereas the set of points (rg (ki),rg(ki)), @ = 1,..., R, are the pairs in
Table L, i.e., (1,1), (2,2), (3,4), (4,5) and (5, 3).

TABLE Il
COMPUTATION OF KENDALL CORRELATION FOR THE RUNNING EXAMPLE.
Index | Pairs (rr(k;), 7r(k;)); (rg(ki),rg(k;)) | Concordant
1 (1,2), (1, 2) Yes
2 (1,3), (1, 4) Yes
3 1,4, (1,5) Yes
4 (1, 5), (1, 3) Yes
5 2,3), 2, 4) Yes
6 (2,4),(2,5) Yes
7 (2,5),(2,3) Yes
8 (3,4), 4,5) Yes
9 (3,5), 4, 3) No
10 @, 5), 5, 3) No
S (8-2) 0.6

[12], which is a family of statistics that measures ordinal
association between variables.

IV. HANDLING POSSIBLE TIES

Ground-truth may present ties among variables. That is,
there exists at least one subset of features where any arrange-
ment of them within a set of specific positions is valid/correct.
As an example, we may have five features where the third
and fourth elements are of equal importance. For instance,
we could have as a ground truth {g1 = 5,92 = 4,934 =
[1,2], 95 = 3}. In this example, we can interpret that we have
two possible sequences of ground-truth: {g1 = 5,92 = 4,93 =
Lgs=2,95 = 3} or {gl =592 =493 =2,94= 1,95 =
3}. Hence, a possible way to deal with this situation and to be
able to apply the scoring methods of the previous sections is to
rearrange (according to the possible ties) the ground-truth, in
such a way as to be closer to the ranking to evaluate. Namely,
we permute within the position of the ties to find the ground-
truth sequence that is the closest (in a distance) to the ranking
that we need to evaluate. After finding the closest ground-truth
sequence, all the scoring functions can be directly applied.
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V. EXPERIMENTS
A. Ranking methods for feature selection

To evaluate the different score methods described in Section
I, we utilize the RMs based on wrapper methods [1],
[8], [15]. Specifically, we use the following RMs: 1) leave-
one-covariate-out, called LOCO in the literature (RMO) [8],
2) forward selection adding variables “forward” minimizing
an external cost (RM1), 3) backward elimination removing
variables “backward” minimizing an external cost (RM2), 4)
backward elimination removing the best variable “backward”
maximizing an external cost (RM3), and 5) forward selection
adding the worst variable, maximizing an external cost (RM4).
The last four RMs are described in [1, Sec. III A].

B. Synthetic dataset generation

We create a synthetic dataset to rank variables under con-
trolled conditions, using the RMs described in Section V-A.
The RMs are then assessed, knowing the ground-truth, using
the different scores. The dataset is structured according to a
linear model, with variables selectively included and excluded
based on specific criteria. It contains N = 5000 observations
and R = 20 variables, represented as x = |21, ..., Tg0]. The
details of these variables are provided in Table IV.

TABLE IV
FEATURE GENERATION: SAMPLING FROM A DISTRIBUTION

Variables Generation / Distribution
x1, £2, 5 7, N(O 1)
Zi5, T16, T18, £19 ’
@3, @a, o5 B0, u ([ )
%10, %13, T20 22
6 z3
z=05zs +e €~N(,1),
Z11 »—mean(z)
std(2)
z=05x10+¢ €~N(0,1),
T12 z—mean(z)
5td(2)
z=x5+¢e €e~N(0,1),
Z14 z—mean(2)
std(2)
z=02x2+u, u~U0,1]),
xi7 »—mean(z)
std(z)

True model: The corresponding observations were gener-
ated as follows

Yn =0.6z2 + 0.6z3 — 0.224 + 0.125 — 0.327 4+ 0.1x3
+ 0.8x9 — 0.3211 + 0.3212 + 0.3214 + 0.5215 + 0.9214
+ 0.21’17 — 0.3%18 — 0.5:1]19 + 0.61’20. (15)

Note that in this experiment, we have not added noise in
the generation of y. It is important to remark that the
model in Eq. (15) excludes explicitly the following features:
T1, Tg, 10, and x13. However, x4 is included as a transfor-
mation of xo, i.e., xg = :1:3 Moreover, some variables present
linear correlation: xg and x11, £1g and x12, x5 and x14, 29 and
x17. Indeed, x11, 12, £14, and x17 are obtained with a linear
transformation of another variable plus noise as shown in Table
IV. Some variables, like x5 and z3, as well as x7 and xg,

share identical coefficients but follow different distributions.
This design introduces collinearity and redundant information,
creating a robust dataset for evaluating model performance.
Model used within the RMs. We define the parametric
model that is used to assess the different RMs for the dataset
described in Section V-B. The relationship between inputs and
outputs is studied using the linear parametric model,

y = Xg. (16)
The regularized least squares (LS) estimator is
B=(XTX+) Xy, (17)

where A = 0.5 and I is a diagonal unit matrix. Hence, the
predicted output according to the model is

§=XB=X(X"X+) Xy (18)
the error vector is ¢ = y — § = (I — X(XTX)7"1XT)y,
where é = [é1,...,éx]T, and I is an N x N identity matrix.
To evaluate the model’s performance, we use the Euclidean-
norm to compute the error. Note that the parametric model is
linear as the true model. Then, we remove the issue of model
mismatc,h and we can focus on the comparison of the RMs.
The ranking obtained by each RM is shown in Table V.

C. Scores for each ranking method

This section shows the score obtained by using the scoring
functions in Section III, allowing for comparing the different
RMs. With this aim, we first define the ground-truth of our
true model in (15).

Ground-truth: The variables, considering only their
subindices, are ranked in descending order of importance
(obtained sorting in decreasing order the absolute values of
the coefficients in the true model) as detailed below

16 — 9 — (2,3,20) — (15,19) — (7,11,12, 14, 18)
— (4,17) = (5,8) — (1,6,10,13),

where indices within the parentheses (-, ..., ) indicate ties in
the ranking, meaning the variables inside the parentheses have
the same importance in the model. Any permutation of these
variables will be considered a correct ranking. We can compare
non-normalized scores between RMs, and normalized scores
can be used to compare different scores for the same RMs.
The following scoring functions are considered:

S1 - Match counting,

S2 - Permutation distance,

S3 - Distance summing,

S4 - Eq. (13), with o = 2, w; = 1/R.

S5 - Eq. (13), with o = o0, w; = 1/R.

S6 - Eq. (13), with a = 2, rational decay weights,

S7 - Spearman Correlation,

S8 - Kendall Correlation.

The resulting scores are shown in Table III.
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TABLE III

NON-NORMALIZED (LEFT) AND NORMALIZED (RIGHT) SCORES OF EACH RM.

RMs S1 S2 S3 S4 S5 S6 S7 S8
RMO 11-055 12-0.63 7.5-0.79 7.66 - 0.66 6 -0.32 7.65 - 0.66 0.77  0.67
RMI 15-075 15-0.79 82-086 826-0.72 6-0.32 8.00 - 0.69 0.84 0.77
RM2 16-080 16-0.84 86-091 9.19-0.80 10-053 945-082 092 084
RM3 14-0.70 15-0.79 7.4-0.78 7.34-0.64 6 -0.32 7.43 - 0.64 0.74  0.62
RM4 13-065 15-0.79 87-092 990-0.86 14-0.74 10.13-0.88 096 0.87
TABLE V higher scores across different evaluation metrics, indicating

RANKINGS OF THE VARIABLES/FEATURES.

their robustness. Moreover, it seems the score measures based
on correlation are able to detect relevant behavior in the RMs

RMs Ranking

RMO 1692203157 1712111448510161318 19
RMI 1692320151814 127 1711485101613 19
RM2 1692320151914 12717114851016 1318
RM3 16922031517 1271451141086 1311819
RM4 1692203151918 145171271141086 131

TABLE VI
RANKING THE RMS. THE SYMBOL * INDICATES SCORE TIES.

Scoring Ranking methods
1st. 2nd. 3rd. 4th. Sth.
S1 RM2  RMI RM3 RM4 RMO
S2 RM2 RMI* RM3* RM4* RMO
S3 RM4  RM2 RMI RMO RM3
S4 RM4  RM2 RM1 RMO RM3
S5 RM4 RM2 RM3* RMI* RMO*
S6 RM4  RM2 RM1 RMO RM3
S7 RM4  RM2 RM1 RMO RM3
S8 RM4  RM2 RM1 RMO RM3

All input variables are normalized with zero mean and unit
variance, ensuring consistent signal power.

Results. We present a summary of the results obtained in Table
VI. We observe that RM2 and RM4 show virtually always
the best performance, occupying either the first or second
position in the ranking among almost all scoring functions.
RM4 makes more errors in the central and last positions of
the ranking, which are less relevant. RM3 and RMO exhibit the
worst performance. Note that the score functions S7 and S8,
based on correlations, coincide in their classifications for the
RMs. Similarly, S1, S2, which only focus on correct/incorrect
features, give the same classification. Finally, we compare the
average of the normalized scores for each RM. We get the
following classification: 1) RM4 (0.83), RM2 (0.81), RM1
(0.72), RM3 (0.65), RMO (0.63). Surprisingly, RMO (jointly
with RM3), which is related to the Shapley values, seems to
be the worst RM [8].

VI. CONCLUSIONS

In this work, we evaluated various scoring functions to
compare ranking methods (RMs) for feature selection. We
explored multiple approaches, from the simplest one, the
match counting, to more advanced metrics. We test differ-
ent RMs and the different scoring functions to evaluate the
performance of each RM, as well. Experimental results on
synthetic data have shown that RM2 and RM4 (which are
two sequential backward procedures) consistently achieved

without subjective choices (such as defining some weights).
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