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Abstract—Electric load demand forecasting is a challenging
task which can be of service to downstream tasks and is of interest
to various communities, such as power supply companies. In this
paper, we tackle this task by introducing a hard representation
based regularization technique for neural networks, which can
be incorporated into the loss function of any standard network.
Specifically, hard samples are first identified by the network
by their contribution to the loss during training. Then, the
most difficult representations within a batch, which more heavily
contribute to the network’s loss and in turn hinder the network’s
performance, are forced to become more similar to their nearest
representations in their batch. In this way, we achieve improved
generalization ability, and more stable performance. To evaluate
the effectiveness of our method and facilitate future research on
the task, we curated and publicly shared a dataset with energy
demand data from Switzerland. Experimental studies on three
datasets show that the proposed method can be effectively applied
to the task and provide improvements in terms of performance
with minimal hyperparameter tuning.

Index Terms—electric load demand forecasting, hard repre-
sentation regularization, swiss energy market, time-series fore-
casting, hard-mining.

I. INTRODUCTION

Electric Load Demand Forecasting (ELDF), i.e., prediction
of electricity demand values in the future, is a persisting
challenge in today’s energy markets due to many factors which
may significantly affect the forecasting performance [1], [2].
Typically, historical load data is employed as input to the
forecasting models alongside additional data such as weather
data and temporal information, such as day of the year, month,
etc. The output horizon of the models determines the ELDF
category: a) short-term, concerning forecasting of a few hours
up to one-day ahead or a week ahead, b) mid-term, concerning
longer time periods of up to one year, and c) long-term,
concerning time frames of up to several years ahead. In this
paper we are particularly concerned with the task of one-day
(24 hours) ahead forecasting.

ELDF applications vary widely, from power system plan-
ning and operation to energy trading [3]. Achieving an efficient
balance between supply and demand is critical for power
companies, allowing them to avoid excess reserve of power
generation or power interruptions due to load shedding. Such
reasons have made research on the field a particularly interest-
ing topic in recent years [4]. Publicly available datasets such

as ISO-NE [5] or Spain Energy dataset1 facilitate research in
the field and allow for reproduction of previous results as well
as fair comparisons. However, further data could help enrich
the research in the field by providing more variance and larger
training sets which may aid in the generalization ability of the
produced models.

In this paper, we deal with the Swiss Energy Market and
curate a dataset in a format similar to the aforementioned
datasets which we make publicly available in the hopes of
facilitating future research in the field. Some pre-existing
works on the Swiss Energy market have used similar data
and various approaches. For example, in [6] linear regression
was used to model the annual electricity consumption of Swiss
enterprises. In [7], Switzerland’s national electricity demand
was modeled using Bayesian hyper-tuned Neural Networks. In
[8] a Long Short-Term Memory (LSTM) was used to forecast
energy load demand values, applied to Switzerland’s power-
load data. Our work focuses on a) providing a public dataset
to facilitate reproducibility of research, and b) a hard-mining
based regularization method that can be combined with any
Neural Network based method.

Other prior works in the field of energy load demand fore-
casting including statistical models [9] and machine learning
models [10]. More recently, Deep Learning (DL) models have
dominated the field, following their significant accomplish-
ments in various other tasks. More specifically, DL models
have been proposed to deal with the ELDF task in [11], achiev-
ing remarkable results. In [12] a Deep Belief Network (DBN)
was proposed to forecast the hourly load of a power grid,
outperforming previous approaches in both daily and weekly
predictions at an hourly step. In [13] a method was proposed
using a hybrid model of a typical neural network with an
LSTM model. Specifically, the method entailed predicting the
demand separately for the four seasons of the year, based on
the intuition that energy needs might differ significantly during
different seasons.

In this work, we propose a hard-representation-mining
based regularization technique, which is added as an auxiliary
training objective to the standard regression task of neural

1https://www.kaggle.com/datasets/nicholasjhana/energy-consumption-
generation-prices-and-weather
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networks, and which first detects difficult samples based on
the network’s predictions. Then targets are added for the
most difficult samples to the objective, specifically they are
encouraged to approach samples which the network deems as
easier again based on its predictions. Our proposed method
is based on the point that some difficult or outlying samples,
which more heavily contribute to the network’s loss, might
hinder the network’s performance by forcing it to overfit those
samples while forfeiting some generalization ability.

The main contributions of this paper can be summarized as
follows:

• We propose a novel hard-mining based regularization
method for the task of one-day ahead energy load fore-
casting. The proposed method is model agnostic and can
be added as a plug-and-play module on any state-of-the-
art model to increase performance.

• We make a large ELDF dataset complete with historical
load data and weather data publicly available, alongside
the code used to clean and process it.

• We perform experiments on three publicly available
datasets and showcase the effectiveness of the proposed
method, without adding any computational overhead dur-
ing deployment.

The remainder of the manuscript is structured as follows.
Section II presents in detail the proposed hard representation
regularization method. Subsequently, the experimental evalu-
ation is presented in Section III, including the presentation of
the dataset on Swiss Energy Market. Finally, the conclusions
are drawn in Section IV.

II. PROPOSED METHOD

In this work we propose a novel regularization method for
improving the forecasting performance towards the electric
load demand forecasting task. The proposed Hard Representa-
tion Regularization (HRR) method is grounded on the concept
of multitask learning [14], which has been extensively applied
as a regularization strategy, considering classification tasks
[15]. In this paper we incorporate it to time-series forecasting
tasks, and specifically to electric load demand forecasting,
developing a novel hard representation regularization method.

Specifically, apart the from the main regression loss em-
ployed for training the model for electricity demand prediction
task, we introduce an additional regularization loss to the
output of the model that forces the hard representations to
become more similar to their nearest non-hard representations.
That is, during the training we identify the hard represen-
tations, i.e., the representations with the maximum main
regression loss based on one percentage threshold (e.g., 20%
of representations with the maximum regression loss), and we
attach an additional auxiliary loss at the space generated by
the output layer which forces these hard representations to
approach their nearest, i.e., most similar in terms of a similarity
metric (e.g., Euclidean distance) non-hard representations (i.e.,
representations other than the ones deemed as hard in the
previous step) inside their batch, defining another percentage

threshold (e.g., each hard representation to approach the 20%
of nearest non-hard representations).

More specifically, we consider a neural network for electric
load demand forecasting FW , parametrized by weights W ,
with an input space X ⊆ RD, and an output space Y ⊆ Rd.
We also consider the input samples xi, i = 1, · · · , N , their
corresponding outputs, yi, i.e., yi = FW(xi) and their ground
truth vectors gi ∈ Rd. As it will be presented in the subsequent
section, the input samples are built so as to consider previous
load and temperature values with respect to the target day.
Specifically, xi ∈ R171, while since we aim to predict the load
demand for next day on an hourly basis, gi,yi ∈ R24. The
model is trained using a regressions loss, ℓr. Several regression
losses can be utilized (e.g., L1, L2), in this paper we utilize
Smooth-L1, which acts both as L1 when errors are large and as
L2 when errors decrease, providing robust performance, since
we have seen in preliminary experiments that performs better,
while it has also been utilized in the relevant literature [16].
Smooth-L1 is formulated as follows for a sample i:

ℓr(gi,yi) =

{
0.5(gi − yi)

2, if |gi − yi| < 1

|gi − yi| − 0.5, otherwise.
(1)

During the training process, we define a threshold, T1,
for the percentage of representations with the maximum re-
gression loss inside the batch, in order to identify the hard
representations. That is, considering each output representation
yi = FW(xi), associated with its loss value ℓr(xi,yi), we
sort the representations based on their loss values, and we
define the hard representations, as: yh

j , j = 1, · · · , Nh,
where Nh = T1 × batch size/100. Then, we introduce the
additional regularization objective that encourages the hard
representations to approach their nearest non-hard represen-
tations. To do so, we define a second threshold T2 for the
percentage of the nearest non-hard representations that each
hard representation is forced to approach to. That is, each
hard representation yh

j is associated with a subset of non-
hard nearest representations yn

k , k = 1, · · · , Nn, where
Nn = T2 × (batch size − Nh)/100. Therefore, our goal
is to minimize the regression loss, ℓr between each hard
representation yh

j and the mean value, mj of nearest non-
hard representations. The total for training the regularized
forecasting model is formulated as:

ℓtotal = ℓr(g,y) + λℓr(m,yh), (2)

where the parameter λ controls the contribution of the two
loss terms. Thus, training the forecasting model with both the
main and the additional regularization loss leads to advanced
generalization ability and more stable performance. During
the test, the test samples are simply propagated to the trained
model and the load demand predictions for the target day are
produced.

III. EXPERIMENTAL EVALUATION

In this section we present the experiments conducted in
order to validate the proposed method. We first present the
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utilized datasets, including the novel dataset constructed for
the electric load demand forecasting task on Swiss energy
data. Subsequently, we present the evaluation metrics and the
utilized model, followed by the implementation details. Finally
the experimental results are discussed.

A. Datasets

The main target of this paper is to address the electric
load demand forecasting on Swiss Energy Market. However,
in order to further validate the effectiveness of the proposed
method, we also perform experiments on two additional
datasets.

1) Swiss Energy Market: We have collected historical load
data from SwissGrid2 and complemented them with weather
data from Open-Meteo3, specifically temperature values from
Zurich, the largest city in Switzerland, to match the format
of other existing datasets in the field. In total, the data spans
16 years, specifically starting from 2009 and up to 2024. This
is the largest of the datasets used in this works and, to the
best of our knowledge, one of the largest datasets designed
for this task in terms of years covered. Figure 1 shows the
curated electricity load data, where it is evident that energy
demand data exhibits multiple periodicities. In Figure 2 the
daily energy demand is shown as a function of the day of the
year, where the difference in demand between weekdays and
weekends can be seen clearly. This behaviour influences the
choice of features we choose to use as input to the model, as
will be detailed in Section III-C.

Preprocessing of the dataset included fixing some missing
values, namely by interpolating values that were close to 0 as
well as values greater than 107 via cubic interpolation. For
the weather data, there were no missing or outlier values in
the collected data. Data from years 2009-2022 are used for
training, 2023 is used for validation, and finally data from
2024 are used for testing. We make this dataset as well as
the code used to generate it publicly available to facilitate
further research on the field. The dataset can be found at this
repository4.

2) ISONE: ISO-NE5 consists in historical load and weather
data (i.e., temperature) from New England, collected from
eight years. Specifically, for training we utilized data from
years 2007-2012, data from 2013 are utilized for validation,
and finally data from 2018 are used for testing.

3) Spain Energy Market: The dataset of Spain Energy
Market consists in historical load data, provided by ENTSO-
E Transparency Platform, and weather information (i.e., tem-
perature), acquired from OpenWeather. Data from four years
are used. Specifically, for training we utilized data from years
2015 - 2017, data from 2017 are used for validation, and finally
data from 2018 are used for testing.

2https://www.swissgrid.ch
3https://open-meteo.com
4https://github.com/vivinousi/energy demand ch
5https://github.com/yalickj/load-forecasting-resnet

B. Implementation Details

All the models are trained using Adam optimizer with an
initial learning rate of 0.003. The mini-batch consists of 64
samples, and the models are trained for 1,000 epochs. T1 is
set to 75%, T2 is set to 75%, while the parameter λ in eq. (2)
for controlling the relative importance of the two contributed
losses is set to 0.001. All the experiments conducted on an
NVIDIA GeForce RTX 3050 with 4GB of GPU memory.
The proposed method was implemented using the Pytorch
framework.

C. Model Architecture

In this work, a simple Multilayer Perceptron (MLP) is
employed for evaluating the effectiveness of the proposed
HRR method. The model consists of one hidden layer with
32 neurons, while the output layer consists of 24 neurons,
since our goal is to predict the load demand for each of
the 24 hours of the next day. The input features are built
according to [17]. Specifically, the input consists of a total
of 171 features that include the load of the day one day prior
the target day (24 features), the load one week prior the target
day (24 features), and the load one month, i.e., 28 day, prior
the target day (24 features). The corresponding temperatures
for the aforementioned days are also included (72 features),
as well as the temperature of the target day (24 features).
Finally, two binary indicators are included, of the target day
being holiday and weekend, as well as another indicator of
which day of the week is the target day (3 features in total).

D. Evaluation Metrics

We use a common metric considering time-series forecast-
ing tasks, i.e., Mean Absolute Percentage Error (MAPE), in
order to evaluate the effectiveness of the proposed method.
MAPE considering a set of Nt test samples is formulated as
follows:

MAPE =
100%

Nt

Nt∑
t=1

∣∣∣∣rt − r̂t
rt

∣∣∣∣, (3)

where rt corresponds to the ground truth, and r̂t to the model’s
prediction. We execute each experiment five times, and we
report the mean value of MAPE and the standard deviation.
We also provide the percentage of improvement achieved by
the proposed method over the baseline.

E. Experimental Results

First, in Table I we provide the experimental results of the
proposed HRR method against baseline, i.e., training without
the proposed regularization objective, on the three considered
datasets, in terms of test MAPE. We also provide the per-
centages of improvement for each case. Best performance is
printed in bold. As it can be observed the proposed method
considerably improves the baseline forecasting performance on
all the utilized datasets. Specifically, HRR provides improve-
ments up to 6.85%. It can also be noticed that in two out
of three datasets the standard deviation of baseline training is
large, while the regularized HRR training is stable, indicated

1829



Fig. 1. Swiss electricity demand data, with hours shown on the y-axis and days shown on the x-axis, over the span of 16 years (mean daily demand value
shown in light blue).

Fig. 2. Distribution of the proposed dataset per day of the year, with colors
highlighting whether each day is a weekday or a day of the weekend.

by the low standard deviation on all the utilized datasets.
Correspondingly, in Fig.3, we provide the mean test MAPE
(%) of the five executions throughout the training epochs for
the proposed method against baseline on Swiss Energy Market,
where the steadily improved forecasting performance of HRR
is demonstrated.

TABLE I
EVALUATION OF THE PROPOSED HRR METHOD AGAINST BASELINE IN

TERMS OF TEST MAPE (%) ON THE THREE CONSIDERED DATASETS.

Method Swiss Energy Market ISONE Spain Energy Market
Baseline 2.82 ± 0.10 4.67 ± 0.38 6.92 ± 0.01

HRR (Proposed) 2.68 ± 0.01 4.35 ± 0.01 6.86 ± 0.01
Improvement (%) ↓ 4.96 ↓ 6.85 ↓ 0.86

Subsequently, in Table II we present the evaluation of the
proposed method against baseline on the main dataset of this
paper, for various combinations of the percentage thresholds
T1 and T2, i.e., the percentage threshold for defining the
hard representations inside each batch, and the percentage
of the nearest representations that each hard representation is
forced to approach to, respectively. Best results considering the
comparison of the proposed method against is printed in bold,
while the best performance considering the combinations of
the percentage thresholds is also underlined. Furthermore, for
better comprehension, we visualize the aforementioned results
using a heatmap in Fig. 4. The color gradient represents the
forecasting performance in terms of test MAPE, allowing for
readily identifying optimal and suboptimal combinations of the
parameters T1 and T2. From the demonstrated results several

Fig. 3. Test MAPE (%) throughout the training epochs for the proposed
method against baseline on Swiss Energy Market.

remarks can be drawn. First, we can notice that the proposed
method significantly improves the forecasting performance (up
to 4.96%) for all the considered combinations of thresholds,
apart from one case (T1 = 25% and T2 = 25%). Furthermore,
we can observe that for lower percentage of T1 the HRR
method performs worse in general, for all the combinations
with T2. This is marginally violated in the combinations of
T1 = 50% − T2 = 50% and T1 = 50% − T2 = 75%,
where the lower percentage of T1 performs better. Moreover,
we can observe that as T2 percentage increases, regardless
of the T1 percentage, the forecasting performance improves,
except for a single case, i.e., T1 = 50% − T2 = 50% against
T1 = 50%−T2 = 75%, where the latter combination provides
slightly worse performance. Finally, from the demonstrated
results it is evident that we can achieve the best performance
for the combination of maximum values of the two percentage
thresholds.

Finally, as mentioned previously, the proposed HRR method
is orthogonal to current state-of-the-art models and methods
for electric load demand forecasting, and hence it could be
combined with them for further improving their forecasting
performance. To validate this claim, we also perform exper-
iments applying the proposed HRR method in combination
with the recent state-of-the-art AFORE method [16] on our
main dataset, using the same experimental setup. The exper-

1830



TABLE II
EVALUATION OF THE PROPOSED HRR METHOD FOR VARIOUS

COMBINATIONS OF THE PERCENTAGE THRESHOLDS T1 AND T2 IN TERMS
OF TEST MAPE (%) ON THE SWISS ENERGY MARKET

Method T1 (%) T2 (%) Test MAPE (%) Improvement (%)
Baseline - - 2.82 ± 0.10 -

HRR 25 25 2.86 ± 0.01 ↑ 1.41
HRR 25 50 2.75 ± 0.01 ↓ 2.48
HRR 25 75 2.70 ± 0.01 ↓ 4.25
HRR 50 25 2.81 ± 0.01 ↓ 0.35
HRR 50 50 2.70 ± 0.10 ↓ 4.25
HRR 50 75 2.72 ± 0.01 ↓ 3.54
HRR 75 25 2.76 ± 0.10 ↓ 2.12
HRR 75 50 2.75 ± 0.01 ↓ 2.48
HRR 75 75 2.68 ± 0.01 ↓ 4.96

Fig. 4. Heatmap of various combinations of the percentage thresholds T1

and T2 of the proposed HRR method on Swiss Energy Market.

imental results are provided in Table III. From the provided
results, we can first observe that the proposed HRR method
performs marginally better compared to the AFORE method
applied on the Swiss Energy Market, providing an improve-
ment of 4.96% against 4.25%. In addition we can observe that
the proposed method can indeed be combined with current
state-of-the-art methods providing further improvements for
both of the combined methods.

TABLE III
EVALUATION OF THE PROPOSED HRR METHOD APPLIED IN COMBINATION
WITH THE AFORE METHOD IN TERMS OF TEST MAPE (%) ON THE SWISS

ENERGY MARKET.

Method Swiss Energy Market Improvement (%)
Baseline 2.82 ± 0.10 -

HRR 2.68 ± 0.01 ↓ 4.96
AFORE [16] 2.70 ± 0.01 ↓ 4.25

AFORE & HRR 2.66 ± 0.01 ↓ 5.67

IV. CONCLUSIONS

In this paper, we have investigated the problem of electric
load demand forecasting using DL models and proposed a
hard-mining based regularization technique. The proposed
method can be integrated as part of the objective function of

any neural network model that uses regression loss to forecast
predictions. The method’s effectiveness was evaluated on three
datasets: two pre-existing ones and a newly curated dataset
from the Swiss Energy Market, which is publicly shared to aid
future researchers in the field in training more robust models
and making comparisons. Results on all three cases showed
that improvements in forecasting accuracy can be achieved
with the proposed method for the 24-hour ahead forecasting
problem.
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