
Anomaly Detection via Re-encoding in
Autoencoder-Based Compression for
Time Series Monitoring Applications

Andriy Enttsel ∗, Aldo Sean Sartor ∗, Alex Marchioni ∗, Gianluca Setti ‡†, Riccardo Rovatti ∗†, Mauro Mangia ∗†
∗DEI, †ARCES, University of Bologna, Italy, ‡CEMSE, KAUST, Saudi Arabia; contact author: andriy.enttsel@unibo.it

Abstract—Monitoring systems generate and transmit large
volumes of data to processing facilities capable of performing
multiple tasks. To reduce transmission and storage costs, data
is often compressed, with autoencoders (AEs) emerging as a
promising neural network-based approach. This work considers a
scenario where the receiver is responsible for both reconstruction
and anomaly detection. We propose a novel anomaly detector
that operates on the receiver side, approximating the standard
anomaly score of conventional AE-based detectors. The proposed
approach requires no fine-tuning, as the compression process
itself ensures strong detection performance. Moreover, its perfor-
mance can be further enhanced through a common regularization
technique. We validate our method through experiments on two
distinct time series datasets: ECG signals and acceleration data.

Index Terms—anomaly detection, dimensionality reduction,
autoencoder, information theory, compression

I. INTRODUCTION

In many acquisition systems, sensors collect data that is later
processed by remote devices to extract essential information.
To meet energy and bandwidth limitations, sensors often
employ lossy data compression prior to transmission. This
approach allows for higher compression ratios compared to
lossless methods, though it introduces the risk of information
loss, which can negatively impact subsequent data processing.

Among the various lossy compression techniques,
autoencoder-based dimensionality reduction (AE) [1] is
a widely used method. The AE is a neural network that
consists of two sub-networks: an encoder, which reduces the
dimensionality of the input, and a decoder, which reconstructs
it. These networks are trained together to minimize distortion,
which is the difference between the reconstruction and
the original input. AEs may be asymmetric, entailing a
lightweight encoding to meet the sensor’s computational
constraints, alongside a potentially costly decoding stage
executed in the cloud [2].

However, reconstruction may not be the only critical task.
In fields such as Structural Health Monitoring [3], Condition
Monitoring [4], and Healthcare Monitoring [5], acquisition
systems collect vast amounts of data to assess the health of
monitored systems. A common technique for this purpose is
anomaly detection (AD) [6], which aims to identify abnormal
behaviors and distinguish them from normal conditions.

While the effects of compression on reconstruction have
been extensively studied since the advent of rate-distortion
theory [7, Chapter 8], the trade-off between compression
and AD has only recently gained attention, as discussed

Fig. 1: Block diagram of the system with an encoder (ENC)
compressing a signal and a decoder (DEC) recovering it
for further processing. The signal, either normal (xok) or
anomalous (xko), is classified by a detector (DET) at the
receiver.

in [2]. The authors demonstrated that detection performance
rapidly diminishes as distortion increases when dimensionality
reduction is optimized for sole reconstruction.

Despite this, AE-based dimensionality reduction remains a
popular tool for promoting AD. In [8], a Deep Support Vector
Data Description (Deep SVDD) method was proposed, which
leverages an AE trained to minimize reconstruction error. The
encoder is then fine-tuned to minimize the volume of the
latent representation and serves as the detector. Alternatively,
[9] integrates latent volume optimization as a regularization
term during the AE training process, leading to a Shrink AE
(SAE) that does not require further fine-tuning of the encoder.
A similar technique is also proposed in [10].

However, these approaches focus on AEs designed specifi-
cally for AD, neglecting reconstruction quality. An AE that
balances both tasks is presented in [11], where the AE is
trained with a regularization term that controls the differential
entropy of the latent representation. This regularization helps
the AE prioritize features valuable for AD, even if it slightly
reduces reconstruction performance. The trade-off between re-
construction and anomaly detectability in entropy-regularized
AE and SAE was further explored in [12].

In this paper, we extend the research in [12] by propos-
ing a novel anomaly detection score, based on the self-
assessment technique, which is commonly used in compressed
sensing to evaluate reconstruction quality [5], [13]. After
reconstructing the received measurement, the self-assessment
involves re-projecting the reconstructed instance back into the
measurement space and comparing it to the received signal. In
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Fig. 2: Block diagram of the detector, where the self-
assessment re-encodes the reconstructed signal x̂ to obtain ŷ,
used to compute the anomaly score ∥y − ŷ∥2.

compression scenarios where the original vector is unavailable
at the receiver, this approach has been shown to effectively
approximate the classical mean squared error between the
reconstructed vector and the original. We use this method
to approximate the standard anomaly score for an AE-based
detector, proposing a detector that requires no fine-tuning,
as the compressor alone ensures good detection performance.
Additionally, we show that the performance of this score can
be further enhanced with a detection-oriented regularization.

We assess the effectiveness of the proposed approach on two
different time series: Electrocardiogram signals coming from a
Health Monitoring application and accelerometers’ waveforms
used for Structural Health Monitoring.

The paper is organized as follows: Section II presents
the mathematical models; Section III takes two use cases
and describes the datasets, model architecture, and numerical
evidence. Finally, the conclusions are drawn.

II. MATHEMATICAL MODELS

We consider a system, illustrated in Fig. 1, where a sensor
captures an n-dimensional signal x and compresses it into a
k-dimensional representation y = ENC(x), where k < n.
The compressed signal is then transmitted and reconstructed
at the receiver using a decoder, yielding x̂ = DEC(y). In
parallel, a detector (DET) determines whether the signal is
normal (xok ∼ fok

x ) or anomalous (xko ∼ fko
x ).

When employing autoencoder (AE)-based compression, the
encoder ENC and decoder DEC are neural networks. Since
anomalies are rare and typically unknown during training, the
AE is trained exclusively on normal signals, i.e., x = xok.
Reconstruction quality is commonly estimated using the Mean
Squared Error (MSE).

Minimizing MSE as a loss function results in an AE opti-
mized solely for reconstruction, potentially discarding features
of x that are crucial for anomaly detection [2]. To mitigate
this issue, the authors in [11] proposed incorporating a con-
straint on the differential entropy of yok, denoted as H(yok).
Under the assumption that the latent representation follows
an isotropic Gaussian distribution of zero mean, minimizing
Ĥ(yok) is equivalent to minimizing the expected squared
norm of yok [14]. Consequently, to ensure the AE retains
information relevant for anomaly detection at the receiver, we
adopt the following loss function:

Lk,λ(x
ok) =

1

nN

N−1∑
i=0

∥∥xok
i − x̂ok

i

∥∥2+ λ

kN

N−1∑
i=0

∥yok
i ∥2, (1)
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Fig. 3: Examples of GWN and Time Warping anomalies with
two values of ∆ injected into a window of the ECG signal.

where xok
i , x̂ok

i and yok
i represent one of the N instances of

xok, x̂ok and yok, respectively.
It is worth noting that increasing λ improves anomaly

detection performance at the cost of reduced reconstruction
accuracy. However, enhancing anomaly detection is not as
simple as arbitrarily increasing λ; instead, the two terms in
(1) must be balanced to achieve an optimal trade-off [9], [11].

When performing AD at the receiver, a straightforward
approach is first to reconstruct the signal, x̂, and then apply a
standard anomaly detection algorithm. From an information-
theoretic perspective, this is equivalent to detecting anomalies
directly in the compressed domain, i.e., using y [2]. Operating
in the compressed domain has a key advantage: the reduced
dimensionality of y compared to the original signal mitigates
the curse of dimensionality, enhancing the scalability of the
detection process. In this work, we propose a hybrid approach
that leverages both reconstruction and compressed-domain
analysis. Since signal reconstruction is already required, a
natural anomaly score would be the reconstruction error,
∥x − x̂∥2. However, this requires access to x, which is
unavailable at the receiver. To address this, we adopt the self-
assessment principle and define the anomaly score as:

s(y) = ∥y − ŷ∥2 = ∥y − ENC (DEC (y))∥2 . (2)

Fig. 2 summarizes the detection process, which relies on the
compressed representation ŷ of the reconstructed signal x̂ to
eliminate the need for the original signal x. In the presence of
an anomaly, the decoder struggles to accurately reconstruct x,
leading to a significant discrepancy between ŷ and y, which
serves as a reliable indicator of abnormality.

III. NUMERICAL SETUP

We assess the effectiveness of the proposed approach on
two different datasets: an Electrocardiogram (ECG) trace com-
ing from a Health Monitoring application and accelerometer
(ACC) signal used for Structural Health Monitoring.

A. ECG
Synthetic ECG signals were generated following [12] with

a sampling rate of 256 sps, and 35 dB of injected white noise.
For training and validation, we generate 2×106 windows, each
containing n = 128 samples. An additional 104 windows are
created to evaluate performance.

Regarding anomalies, prior research [15], [16] has shown
that the lack of real-world anomalies can be mitigated by in-
jecting synthetic perturbations into normal signals. Following

1838



33 33.5 34 34.5 35

0.5

0.6

0.7

0.8

0.9

1.0

RSNR

A
v
er
a
g
e
A
U
C

33 33.5 34 34.5 35

RSNR

33 33.5 34 34.5 35

RSNR

∥y − ŷ∥2
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Fig. 4: Anomaly detection-reconstruction trade-off for ECG signals represented in terms of AUC (averaged over 12 anomalies)
vs. RSNR curves for different levels of anomaly intensity ∆.

[16], we consider 12 types of perturbations corresponding ei-
ther to system faults, such as Constant, Impulse, and Gaussian
white noise (GWN), or to changes in the sensed phenomenon,
such as Time Warping and Principal Subspace Alteration.

Anomalies are injected into each window of the normal test
set with an intensity measured by the deviation metric [17]:

∆ =
1

n
E
[∥∥xok − xko

∥∥2] . (3)

Examples of two types of anomalies are shown in Fig. 3,
comparing the original signal with anomalous signals at two
different deviation levels ∆. As expected, higher values of ∆
result in more pronounced anomalies.

The AE architecture is inherited from [12] and follows an
asymmetric design. Specifically, ENC applies a simple linear
transformation, mapping an n = 128 dimensional input to a
k = 16 dimensional output, achieving a compression ratio
(CR) of 8. The decoder DEC processes the encoder’s output
with three hidden layers with 2n, 2n, and n units, respectively,
using ReLU activations, followed by a linear output layer.

AEs are trained using the Adam optimizer [18] with a
batch size of 128 and an initial learning rate of 0.001, which
decreases whenever the loss reaches a plateau, with a patience
of 20 epochs. Reconstruction performance is evaluated using
the Reconstruction Signal-to-Noise Ratio (RSNR):

RSNR = E

[ ∥xok∥2
∥xok − x̂ok∥2

]
dB

. (4)

We compare the performance of our detector with two com-
monly used unsupervised detectors applied to y, the same as
those analyzed in [12]:

• Mahalanobis distance (MD) [19]: Computes the anomaly
score as the squared distance of y from the mean vector,
with each component weighted by its variance.

• OCSVMν [20]: Uses a kernel function to map y into
a higher-dimensional feature space, where a hyperplane
separates normal and anomalous samples. The score is
given by the distance of y from the origin in this feature
space. The parameter ν controls the fraction of training
vectors selected as support vectors.

Detection performance is ultimately evaluated using the
Area Under the Curve (AUC) of the Receiver Operating
Characteristics (ROC) [21].

Figs. 4 and 5 illustrate the detection-reconstruction trade-
off for the ECG signal by varying λ in (1). Fig. 4 shows
the AUC, averaged over 12 anomalies, as a function of
reconstruction performance. Each subplot corresponds to a
different detector, with colors indicating anomaly intensities.
The orange vertical dotted line represents the intrinsic SNR
due to noise, while the dark green line highlights that the
standard AE (λ = 0) achieves 34.8 dB, closely matching the
intrinsic SNR. Horizontal dotted lines indicate the detection
performance when λ = 0.

In the two rightmost subplots, both MD and OCSVM fail
to exploit latent space information to distinguish normal from
anomalous signals at λ = 0. Regularization improves their
performance but reduces reconstruction accuracy, with the best
detection achieved at 33.17 dB for both detectors. Notably, at
∆ = 0.5, the AUC increases from the initial 0.46 for both
MD and OCSVM to 0.79 and 0.78, respectively. Conversely,
in the leftmost plot, the proposed detector already exhibits
strong performance at λ = 0, which can be further improved
at the expense of a minor 0.5 dB reduction in RSNR. For
instance, at ∆ = 0.5, the AUC increases from 0.91 to 0.97.

Fig. 5 provides a more detailed analysis by displaying the
trade-off for each anomaly separately. The red line represents
the performance of a random detector, while the other two
colors correspond to two different anomaly intensities. The
solid line denotes the performance of the proposed detector,
whereas the dashed line represents OCSVM. The densely
dotted and dotted lines indicate the performance of OCSVM
and the proposed detector, respectively, at λ = 0.

The results demonstrate that the proposed detector consis-
tently outperforms OCSVM across all anomalies, both with
and without regularization. For instance, in the case of partic-
ularly challenging Mixing with Constant and Time Warping
anomalies, the proposed detector benefits from regularization,
whereas OCSVM performs worse than a random detector.

B. ACC

The proposed method is also applied to the structural as-
sessment of Bridge S101 in Vienna [22], [23]. The bridge has
been structurally characterized by identifying a set of natural
oscillation frequencies as key indicators of its integrity. The
structure was equipped with accelerometer sensors distributed
along its length, capturing vibration signals that reveal modal
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Fig. 5: Anomaly detection-reconstruction trade-off for each ECG data anomaly in terms of AUC vs. RSNR curves for two
levels of anomaly intensity ∆.

shapes. We consider a scenario where this data must be
compressed before transmission.

We focus on a single vertical acceleration channel with
both normal (7.6 × 106 samples at fs = 500 Hz) and
anomalous (2.64×106 samples) data. The data were decimated
to fs = 50 Hz and split into batches of 20 consecutive
n = 256-dimensional windows, randomly and equally divided
for training and testing.

The compressor follows the same architecture (with n =
256 and k = 32) and training strategy (with λ = 0) as the one
in the previous subsection. The training set is augmented with
144× 103 overlapping windows of length n.

The primary objective is to determine whether the spec-
tral characteristics of the data have changed since a com-
mon indicator of structural degradation is a variation in
modal frequencies. In our case the modal frequencies
{4.05, 6.3, 9.69, 13.29, 15.93} are expected to undergo a max-
imum ±7.5% variation [22].

In this scenario, anomaly detection can be based on the
Itakura–Saito spectral distance (ISSD) [24], [3]. Specifically,
we employ the symmetric ISSD (SISSD) anomaly score [4]
defined as:

SISSD =
1

M

M−1∑
k=0

(
ŜR(fk)

Ŝ(fk)
− log

ŜR(fk)

Ŝ(fk)

+
Ŝ(fk)

ŜR(fk)
− log

Ŝ(fk)

ŜR(fk)
− 2

)
, (5)

where M is the number of frequency points, ŜR(f) is the
reference PSD computed offline under normal operating con-
ditions, while Ŝ(f) is computed online and compared with
ŜR(f) to detect deviations from the healthy state.

Following [4], since anomalies are expected to affect spe-
cific frequency bands rather than the entire spectrum, we
also employ the multivariate SISSD (MSISSD) that computes
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Fig. 6: Power spectral densities for original and reconstructed
normal and anomalous signals. The shaded areas highlight the
bands of interest.

SISSD over B spectral bands Sb(f), b = 0, . . . , B − 1 of the
power spectral density (PSD) S(f), and is defined as:

MSISSD =
[
SISSD0 SISSD2 . . . SISSDB−1

]
. (6)

Additionally, we compute the average SISSD across the same
bands:

MSISSD =
1

B

B−1∑
b=0

SISSDb. (7)

The PSD is estimated using the Burg method [25] over
K consecutive n-dimensional windows of the reconstructed
signal x̂. ŜR(f) is estimated from the training set.

This methodology serves as a baseline for our approach,
where the reconstructed signal ŷ is first computed for each
n-dimensional window out of K. The anomaly score is then
obtained by evaluating the discrepancy between the concate-
nated signal Y = [y0, . . . ,yK−1] and its reconstruction
Ŷ = [ŷ0, . . . , ŷK−1].

Fig. 6 presents the PSD averaged over all windows for
both normal and anomalous conditions, comparing the original
and reconstructed signals. The spectral bands of interest are
highlighted in gray. Despite a compression ratio of CR = 8,
the autoencoder effectively preserves most relevant spectral
information while reducing noise.
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TABLE I: Detection performance in terms of AUC for differ-
ent detectors across different values K of processed instances.

K
∥∥∥Y − Ŷ

∥∥∥
2

SSISD0 SISSD1 SISSD2 SISSD3 SISSD4 MSISSD SISSD

1 0.79 0.34 0.69 0.47 0.66 0.45 0.51 0.75

2 0.81 0.49 0.65 0.44 0.65 0.51 0.57 0.67

3 0.83 0.60 0.69 0.48 0.68 0.58 0.65 0.76

4 0.85 0.65 0.79 0.53 0.70 0.66 0.72 0.81

5 0.87 0.68 0.82 0.56 0.70 0.69 0.76 0.85

10 0.92 0.81 0.86 0.69 0.78 0.82 0.88 0.93

15 0.96 0.88 0.88 0.77 0.82 0.90 0.94 0.96

20 0.96 0.91 0.93 0.83 0.84 0.93 0.97 0.97

Detection performance results are summarized in Table I.
Our detector is compared with the detectors based on SISSD
for different values of K. In all cases, increasing K leads to
improved detection performance, except for SSISD at K = 2.
Even for K = 1, the proposed approach achieves strong
performance and consistently outperforms the other methods
up to K = 5. For larger delays, the performance is comparable
to SISSD. Overall, these results suggest that the proposed
approach is more sensitive to anomalies and well-suited for
prompt detection.

IV. CONCLUSION

This work considers the task of anomaly detection down-
stream of signal compression. We propose a novel anomaly
detection method based on re-encoding within an autoen-
coder compression framework, where self-assessment enables
anomaly detection without requiring access to the original
data. Experimental results confirm its superiority over other
conventional methods across different applications. For ECG
signals, our detector achieves robust anomaly detection while
preserving reconstruction quality, unlike Mahalanobis Dis-
tance and One-Class SVM, which require greater compromises
in fidelity to improve detection. In structural health monitoring,
our approach outperforms SSISD and MSISSD while elimi-
nating the need for spectrum computation or frequency band
selection, greatly simplifying deployment.
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