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Abstract—Advancements in smart metering technologies have
significantly improved the ability to monitor and manage water
utilities. In the context of increasing uncertainty due to climate
change, securing water resources and supply has emerged as an
urgent global issue with extensive socioeconomic ramifications.
Hourly consumption data from end-users have yielded substantial
insights for projecting demand across regions characterized by di-
verse consumption patterns. Nevertheless, the prediction of water
demand remains challenging due to influencing non-deterministic
factors, such as meteorological conditions. This work introduces
a novel method for short-term water demand forecasting for
District Metered Areas (DMAs) which encompass commercial,
agricultural, and residential consumers. Unsupervised contrastive
learning is applied to categorize end-users according to distinct
consumption behaviors present within a DMA. Subsequently,
the distinct consumption behaviors are utilized as features in
the ensuing demand forecasting task using wavelet-transformed
convolutional networks that incorporate a cross-attention mecha-
nism combining both historical data and the derived representa-
tions. The proposed approach is evaluated on real-world DMAs
over a six-month period, demonstrating improved forecasting
performance in terms of MAPE across different DMAs, with
a maximum improvement of 4.9%. Additionally, it identifies
consumers whose behavior is shaped by socioeconomic factors,
enhancing prior knowledge about the deterministic patterns that
influence demand.

Index Terms—Water Demand Forecasting, End-Consumer
Clustering, Contrastive Learning, Time Series Analysis

I. INTRODUCTION

Water, a vital resource for life, necessitates effective water
demand management to ensure ongoing and safe access.
Water Distrubution Networks (WDNs) sustain a consistent
water supply across District Metered Areas (DMAs), serving
diverse end-consumers such as households, industries, and
farms, monitored by the temporal aggregation of smart meter
data [1]. With increasing water scarcity, accurate forecasting
that accounts for anthropogenic influences [2] and socio-
psychographic factors [3] is essential. Although aggregating
demand data at the DMA level smoothens statistics and
highlights broad consumption trends (e.g., daily and weekly
seasonality), it can mask unique consumption behaviors and
individual variabilities [4]. With varying consumer behavior
complicating real-time demand modeling, it is crucial to es-
tablish a level of spatial granularity or consumer categorization
to capture broad and localized patterns for forecasting.
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Traditionally, time series analysis has relied heavily on
statistical models, which fit known distributions using para-
metric functions. These models, combined with techniques like
seasonal decomposition and correlational analysis, clarify in-
trinsic and extrinsic time series dependencies and periodicities.
However, recent advancements in Deep Learning (DL), partic-
ularly contrastive learning, have facilitated the non-parametric
learning of complex time series data representations, enabling
the discovery of meaningful patterns from previously unknown
representations [5]. While contrastive learning has been ap-
plied to various time series data streams including electricity,
traffic, and medical for tasks like clustering, and forecasting
[6], [7], its potential for modeling end-consumer water demand
data remains unexplored.

Water demand forecasting has progressed from statistical
and hybrid models [8] to the extensive adoption of Recurrent
Neural Networks (RNNs) and transformer-based models [9],
[10]. The representation of input time features has also ex-
panded beyond the time domain to include the time-frequency
domain via Fourier Transform (FT), and Wavelet Transforms
[11]. Wavelet scalograms, which provide frequency details
along with time localization, facilitate multi-resolution sig-
nal analysis while addressing non-stationarity [12], and are
increasingly utilized in time series applications [13]. Despite
these advancements, accurately forecasting water demand re-
mains a challenge in scenarios where consumer behaviors are
not uniform. The impact of non-deterministic factors such as
culture and economy complicates demand modeling, obscuring
existing demand patterns and hindering efficient water supply
management.

In this study, we introduce a two-stage framework for multi-
step hourly water demand forecasting that leverages unique
consumption behaviors identified through contrastive learning
on smart meter data within a DMA as additional input features
for forecasting. Although existing clustering methods primar-
ily focus on urban household patterns and intra-household
activities [14, 15, 16, 17], to our knowledge, this represents
the first application of an unsupervised contrastive learning-
based approach to delineate water demand patterns across
varied consumer sectors, including commercial, agricultural,
and residential areas. The patterns identified are subsequently
utilized as features with the aggregated DMA demand data,
allowing the model to capture both broad trends and specific
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consumer-induced fluctuations. This approach significantly
enhances forecasting accuracy, especially in districts without
a dominant urban consumer demographic.

II. METHODOLOGY

The proposed framework is depicted in Figure 1. Let
S = {m;,my,...,my} be the set of k unique smart meters
present in a DMA, such that m; = [z}, 2%, ..., %] € RV*L,
where z¢ is the recorded hourly water consumption (m?/h) at
time ¢ by meter ¢ over /N hours. The total hourly consumption
of a specific DMA at time ¢ is mathematically represented
as ry = Zle z} and the downstream task of forecasting for
p hours is defined as the prediction X = [z¢, Ti41, ..., Trrh)
through a deep learning model F', conditioned to a set of
input features X consisting of historical consumption data
[®t—h, Tt—pt1,-.-,Tt—1], where h is the historical context
length, and other exogenous variables of weather, time, and
demographic information.
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Fig. 1: The proposed framework for water demand forecasting
for a heterogeneous consumer DMA.

A. Consumer Clustering based on Contrastive Learning

To separate consumers with varying consumption behaviors,
we adopt a contrastive learning framework TS2VEC [6], that
contrasts temporally within each input sequence of m; and
instance-wise across different input sequences of m; and m;
where ¢ # j;1 < 4,5 < k for a given batch during training.
The individual smart meter consumption data m; is processed
to extract input samples S € R!68%2 with two features, that
are representative of its global and local seasonal behavior.
The first feature is a weekly load profile of m; obtained
through averaging hourly consumption data across all weeks
over the entire time period of the data. This feature acts as
an anchor for the meter’s global characteristics and helps

find similarities and dissimilarities across different meters.
The second feature is also a load profile of m;, albeit for a
shorter period of 12 weeks, to capture the behavior of m;
across different seasons of the year, and reduce the effect
of stochastic temporal behavior on temporal contrasts. To
capture the contrasting behavior of each consumer between
weekdays and weekends, as well as across different consumer
types, the required positive and negative pairs for contrastive
learning includes temporal values representing consumption on
both weekdays and weekends. Input features from the same
consumer make up the positive pair, while negative pairs are
from different users. The hierarchical loss function employed
in TS2VEC also allows for a weighting factor « to emphasize
the contrast between samples evenly or unevenly. The learned
representations of end-consumers are clustered through K-
Means clustering [18] to obtain N, st consumer clusters
with distinctive consumption characteristics and for a given
cluster, the hourly demand of the cluster is the aggregation
over all smart meters present in the cluster.
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Fig. 2: The architecture of the deep learning model for water
demand forecasting.

B. Short-term Forecasting using Wavelet Scalograms

To improve water demand forecasting for heterogeneous
DMA, we employ a Convolutional Neural Network (CNN)
based architecture as a baseline [11] that has been previously
used for this task. The model leverages scalograms to learn
feature representations from utility data. The scalograms of s
scales applied at / time points are obtained for Ny, different
features and are concatenated along the third dimension, giving
an image-like representation of dimensions s X h X Nycqs,
enabling 2D convolutions to learn the relationship between
different features at a given time and scale s. The adopted
architecture is adapted optimally via a cross-attention layer
[19] to incorporate the scalograms of the obtained demand
data of the clusters from the contrastive learning process. The
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resulting model is 96.53% smaller than the adopted baseline.
The attention block dynamically prioritizes weights to the time
and frequency information present in the historical demand
of the different clusters, and their contribution to the total
demand of the DMA. The latent representation of total DMA
consumption and time features act as the query, while the
latent representation of each cluster’s consumption along with
the exogenous factors such as maximum temperature, and
humidity over the prediction horizon p, act as keys and values
for the cross attention layer. The two input branches along with
the attention block are depicted in Figure 2. The attention layer
is followed by feed-forward layers with a final linear layer
producing the forecasts y for the prediction horizon.

III. EXPERIMENTAL SETUP
A. Data

The water demand data for this retrospective analysis is
from Brgnderslev, Denmark and is outlined in Table 1. Four
DMAs including rural and semi-urban areas with heteroge-
neous end-users, a rural area with homogeneous end-users,
and an urban DMA with homogeneous end-users are chosen to
evaluate the effectiveness of the framework. The urban DMA
(predominantly residential) serves as a control to illustrate the
effects of statistical smoothing during forecasting. Geolocation
of each smart meter was utilized to evaluate of clusters
formed in Stage I. The qualitative assessment across all DMAs
featured sparse annotations by a utility company’s technical
expert. Consumption data until the end of 2019 was employed
for all DMAs, reserving the final 26 weeks (half an year)
for testing, which represented between 72% and 78% of the
total data depending on the DMA. This segmentation allowed
the framework to be tested across summer, winter, and a
transitional season. Moreover, 10% of the training dataset was
used as validation data. Actual recorded weather data from the
respective regions are used, rather than forecasts.

TABLE I: Data on the selected DMAs for the study

ID Number of meters Data from Description

A 159 2017 — 09 — 01 Rural

B 210 2017 — 09 — 01  Semi-Urban

C 67 2018 — 01 —01 Rural
Control 1286 2018 — 03 — 01 Urban

B. Stage I: End-user Behaviour Clustering

Weekly hourly load profiles (from Monday to Sunday)
are utilized to learn representations of individual end-
consumers. Negative pairs consist of samples from different
end-consumers, while positive pairs are derived by windowing
the weekly profile of a consumer into two windows: w, (Mon-
day to Friday) and w;, (Friday to Sunday). The TS2VEC model
is trained with a hidden dimension of 64 and a kernel size of
3 for the 1D convolution layers in the 10 residual blocks,
producing an output dimension of 16. A custom sampler with
a batch size of 64 limits each batch to only one sample from
any end-consumer. The resulting representations are clustered

using K-Means, with a maximum of four clusters (residential,
industrial, commercial, and agricultural). The optimal cluster
count is determined using the highest silhouette score.

C. Stage 1I: Water Demand Forecasting

Forecasting features for water demand are identified through
correlational analysis, revealing strong correlations with his-
torical data and moderate correlations with temperature and
humidity. Each feature represents an observed quantity of
demand, weather, or time for 24 hours. The X fcqtyres input
features for the query branch comprise demand data with
24-hour and 168-hour lags, their seasonal components, and
holiday information. Conversely, the X}wtu,.es input features
for the key/value branch are the extracted demand from each
cluster with a 24-hour lag, temperature, humidity, and sine and
cosine representations of the day of the week. Scalograms,
with s = 24 and h = 24, are encoded using Shannon’s
entropy-to-energy ratio [20] to determine the optimal mother
wavelet, identified as *gaus4’.

The model architecture is depicted in Figure 2, detailing
hidden layer output dimensions. LeakyReLU activation func-
tion is used in the convolutional and final feed-forward layers,
while ReLU is employed in other feed-forward layers, with
no pooling layers included. The final block comprises hidden
dimensions of 1024, 512, and 256, concluding with a linear
layer for forecasting with p = 24. The model employs a
learning rate of 0.001, batch size of 256, ADAM optimizer,
and Mean Squared Error (MSE) as the loss function, and is
trained with early stopping on training and validation data set.

IV. RESULTS AND DISCUSSION

The evaluation of the water end-use behaviors involves
analyzing cluster formations across the DMAs, focusing on
their distinct periodicity, trend, and consumption magnitude.
The results for DMA A and DMA B are depicted in Figure
3 and 4, respectively, illustrating two contrasting scenarios:
DMA A represents a heterogeneous consumer profile within a
rural area, while DMA B exemplifies a heterogeneous profile
comprising urban and agricultural area. In all experiments,
clustering through contrastive learning effectively separate
varying end-user behaviors, thereby identifying the dominant
demand patterns to enhance subsequent forecasting task.

In DMA A, a distinct long-term periodicity of approxi-
mately 45 days is identified primarily in two end-consumers
from cluster 0, whereas the remaining 157 consumers demon-
strate only short-term periodicity. Further analysis, supported
by the geolocation of smart meters and insights from the data
provider’s expert, reveals that this long-term periodicity within
cluster 0 that has a significant difference to all other end-
users is associated with a poultry farm, which typically has an
average growing cycle of 6 to 8 weeks.

Conversely, in DMA B, the three distinct clusters underscore
varied consumer behaviors within the DMA. Cluster 2, com-
prising two end-consumer meters linked to a corporate office,
displays a consumption pattern aligned with typical workweek
hours, exhibiting near-zero consumption from Friday evening
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Fig. 3: Observed consumption of DMA A along with the total
demand for the obtained clusters.

to Monday morning. Clusters 0 and 1 demonstrate daily
periodicity, albeit with differing consumption magnitudes, and
are spatially dispersed across the DMA. Cluster 1 predomi-
nantly includes small-scale commercial entities, whereas the
remaining consumers in both clusters are primarily single-
family residences with backyards. In contrast, DMA C lacks
such dynamic consumer diversity, containing only two clusters
with 14 and 53 meters respectively.
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Fig. 4: Observed consumption of DMA B along with the
demand for the obtained clusters.

TABLE II: Quantitative forecasting performance evaluation of
the proposed approach, with baselines. The MAPE metric is
%, while MAE quantifies error in [/h.

Model Metric | DMA A | DMA B | DMA C | Control
ARIMA MAPE 42.36 92.05 43.57 59.67
MAE 50.38 107.9 67.53 86.74
LSTM MAPE 43.80 82.41 31.49 12.98
MAE 9.25 17.00 7.48 1.52
Wavelet CNN MAPE 26.76 41.85 17.43 8.48
MAE 6.34 13.17 4.66 0.97
MAPE 21.86 40.27 16.95 8.40
Our Approach
MAE 5.40 13.52 4.60 0.94

The quantitative results for forecasting across all four DMAs
are detailed in Table II. Across experiments, our methods
outperform the baseline LSTM method greatly, while intro-
ducing further improvement of different degrees compared to
the Wavelet CNN baseline although the number of parameters
are reduced by 97%. Notably, DMA A, which exhibits two

distinct periodicities, in terms of behavior and time frame,
across its clusters, achieved the highest performance gain of
4.9%. Conversely, DMA B and C, despite having clusters with
varying behaviors, maintain weekly periodicities within each
cluster, resulting in less pronounced differences compared to
DMA A. The control DMA illustrates the impact of statistical
smoothing due to a large number of users, where the relative
gain in forecasting performance from even the baseline LSTM
is minimal, starkly contrasting with the significant improve-
ments observed in DMAs A, B, and C. The statistical baseline
of ARIMA exhibits high errors in absolute and relative terms,
as it fails to predict both small and large deviations.

Ground Truth vs Predictions for Hourly Water Consumption
—— Truth
Proposed Approach
—— Wavelet CNN

2019°09-09  201909-11 20190913  2019-09-15  2019-09-17  201909-19  201909-21  2019-09-2:
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Fig. 5: Qualitative comparison between observed and predicted
water demand for DMA B over two weeks.

Further analysis of DMA B through a qualitative two-week
plot (Monday to Sunday) shown in Figure 5 elucidates the
reasons behind the low forecasting performance noted in Table
II. All models primarily capture the trend and seasonality,
struggling to account for the high variance, particularly evident
during weekends and the sharp increase in demand on Mon-
days. This variance is attributed to the corporate end-consumer
in cluster 2 of DMA B, as depicted in Figure 4. This effect
significantly influences the models’ forecasting capabilities on
weekdays. Nonetheless, the proposed approach successfully
identifies the end-user responsible for these stochastic effects
during working days, providing critical insights for proactive
water demand management.

V. CONCLUSION

In this study, we propose and evaluate a novel framework
for forecasting water demand in DMAs with heterogeneous
end-consumers. Using contrastive learning, we identify user
groups with varying behavioral patterns and enhance de-
mand forecasts with features derived from these groups. We
demonstrate this approach with two real-life examples of
complex DMAs. We address the gap in modeling multi-faceted
consumer demand beyond urban centers and elucidate the
effect of statistical smoothing on large urban areas through a
control group. Our method improves forecasting accuracy for
DMA A by 4.9%, capturing both long- and short-term periodic
patterns influenced by socio-economic factors. Additionally,
clustering as a precursor for DMA B reveals end-consumers
whose behavior obscures overall demand patterns, offering
valuable insights for managing supply. As an extension, hybrid
models combining deep learning and statistical methods could
further improve forecasting for corporate consumers in DMA
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B, particularly for their piece-wise linear behavior during
weekends. The effect of the proposed approach could be
quantified on other architectures for time series forecasting.
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