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Abstract—The transformation of time-series data into 
images and the subsequent application of Convolutional Neural 
Networks (CNNs) has recently emerged as a promising 
approach for sensor signal analysis, owing to CNNs' superior 
capability in extracting spatially encoded patterns and complex 
hierarchical features. While prior studies have shown that CNN-
based learning on image-transformed time-series data can 
surpass the performance of traditional direct learning from raw 
time-series data, this advantage is not consistently observed in 
all cases. We investigate key issues, including potential 
quantization error and loss of information during the 
transformation process, CNN's inherent limitations in 
capturing temporal dependencies and long-term correlations, 
the mismatch between transformation methods and specific 
signal patterns, and the risk of overfitting due to the complexity 
imbalance between the data and model architecture. The 
experimental results demonstrate that image-based learning 
achieves higher accuracy and robustness, especially in complex 
environments with noise and overlapping signals. 

Keywords—gas sensor, image encoded, time-series, neural 
network 

I. INTRODUCTION  

Advancements in high-performance sensor technology 
have significantly enhanced the accuracy and efficiency of 
real-time monitoring and control across various domains, 
including environmental monitoring, industrial automation, 
and healthcare. Sensors typically generate continuous output 
over time, resulting in time-series signals characterized by 
non-stationary behavior, varying levels of noise, and complex 
cross-sensitivity effects. Effective analysis of such signals is 
crucial for identifying patterns, detecting anomalies, and 
generating accurate predictions in diverse application settings 
[1], [2]. 

Traditional sensor signal analysis often relies on Long 
Short-Term Memory (LSTM) networks. However, LSTM 

models struggle to capture complex signal patterns and long-
term dependencies in noisy environments, limiting 
classification accuracy. LSTM models are particularly 
Effective at for capturing long-term dependencies due to their 
ability to maintain hidden state information over extended 
time steps, thereby mitigating the vanishing gradient problem 
associated with standard Recurrent Neural Networks (RNNs) 
[3], [4]. However, the complexity and non-linearity of sensor 
signal data often pose significant challenges for direct time-
series learning, especially in the presence of noise and long-
term dependencies. Traditional methods for sensor signal 
analysis involve direct processing of time-series data using 
LSTM and other sequential models. However, direct learning 
from raw time-series data often fails to capture complex 
patterns and long-term dependencies effectively. 

An emerging alternative involves transforming time-series 
data into images and processing them using Convolutional 
Neural Networks (CNNs). CNNs, renowned for their 
exceptional performance in image-based spatial pattern 
recognition tasks, are capable of extracting hierarchical spatial 
features from complex input data [5]. 

The Recurrence Plot (RP) encodes recurrence dynamics of 
a signal over time by calculating pairwise distances between 
time points and applying a threshold to determine recurrence 
states. This approach is particularly effective in identifying 
cyclic patterns and state similarity. The Gramian Angular 
Field (GAF) captures the angular relationship between time-
series values by transforming them into polar coordinates. It 
preserves both the magnitude and directional information of 
the signal, allowing CNN models to detect fine-grained 
temporal structures. The Markov Transition Field (MTF) 
represents state transition probabilities of a time-series as a 
structured matrix. This approach enables CNN models to learn 
dynamic transitions and capture complex state changes in the 
signal [6]. 

These image-based approaches leverage CNN's local 
receptive fields and weight-sharing capabilities to uncover 
complex patterns that may not be readily apparent in the raw 
time-series format. As a result, CNN-based models trained on 
image-transformed data have demonstrated improved 
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performance in certain sensor signal classification tasks 
compared to direct LSTM-based learning [6-8]. 

Despite the encouraging performance gains associated 
with CNN-based learning on image-transformed data, this 
approach is not universally superior. In certain scenarios, the 
transformation process itself may introduce artifacts, degrade 
temporal information, or suppress key features, thereby 
diminishing classification accuracy. Furthermore, CNN’s 
inherent limitation in modeling sequential dependencies and 
long-term correlations may lead to suboptimal performance 
when handling time-series data with strong temporal 
structures. 

This study aims to investigate the performance and 
limitations of CNN-based learning on image-transformed 
time-series sensor data. Section II provides an overview of the 
dataset and the preprocessing steps involved. Section III 
introduces the transformation techniques used to convert time-
series data into images, including RP, GAF, and MTF. Section 
IV describes the experimental setup and the CNN-based 
model architecture. Section V presents a detailed analysis of 
the classification performance, including a comparison with 
direct LSTM-based learning. Finally, Section VI discusses the 
limitations and future research directions to enhance model 
performance and generalization across different sensor types. 

II. METHOD 

In this study, we employed three widely used time-series 
transformation techniques to convert sensor signals into 
images: RP, GAF, and MTF. Figure 1 illustrates the overall 
process of transforming time-series sensor data into image 
representations using RP, GAF, and MTF. The RP encodes 
cyclic patterns within the signal by computing pairwise 
distances between time points and applying a threshold to 
determine recurrence. The GAF preserves angular 
relationships between data points, capturing both the 
magnitude and direction of the signal. The MTF represents 
state transition probabilities, which allows the model to learn 
dynamic transitions within the signal. These transformed 
images serve as input to the CNN-based model, enabling the 
extraction of hierarchical spatial patterns from the data. 

Figure 2 shows the architecture of the CNN model used 
for classification. The model consists of three convolutional 
layers followed by batch normalization and max-pooling 
layers. A fully connected layer with 128 units is used before 
the final softmax layer for classification. The CNN model is 

designed to leverage local spatial patterns and hierarchical 
features extracted from the image representations of time-
series signals. This architecture allows the model to 
effectively identify complex signal variations that are not 
easily captured by direct learning from raw time-series data. 

A. Dataset 

Publicly available sensor signal time-series datasets were 
used for this study. The data consists of continuous resistance 
measurements over time from different types of sensors 
exposed to various gases and environmental conditions. The 
goal is to classify the sensor response accurately based on the 
signal pattern. 

We use the dataset introduced in [9], consisting of 180 
time-series measurements from a chemo-resistive gas 
detection platform composed of 8 MOX gas sensors. Each 
measurement lasted 300 seconds with a sampling rate of 20 
ms. The dataset includes sensor readings, temperature, and 
humidity. The experiments were conducted in a 2.5 m × 1.2 m 
× 0.4 m wind tunnel with two independent gas sources. The 
sensors were exposed to mixtures of Ethylene with Methane 
or Carbon Monoxide at four different flow rates (zero, low, 

Fig. 1. The schematic of the 2D-CNNs with image encoding 

Fig. 2. Example representations of time-series data using RP, GAF, and 
MTF for different gas types. Each row shows the transformation results for 
Carbon Monoxide, Ethylene, and Methane High concentration levels. RP 
highlights cyclic patterns, GAF captures angular relationships, and MTF 
reflects state transition probabilities.  
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medium, high), resulting in 30 mixture configurations. Each 
configuration was repeated 6 times, generating a total of 180 
measurements. The data encode the gas type and 
concentration levels. Each data contains 11 columns: time, 
temperature, humidity, and the 8 sensor readings. Sensor 
readings can be converted to resistance using the formula: 
Rs(KΩ) = 10 × (3110 − A) / A. The dataset has no missing 
values and provides both raw and down-sampled time series 
at 100 ms. 

We preprocess the dataset consisting of 180 time-series 
measurements from 8 MOX gas sensors, each sampled at 20 
ms for 300 seconds. First, the sensor readings are converted to 
resistance values for consistency. To reduce noise and 
computational load, we apply uniform down sampling with 
three factors: DF = 2 (40 ms), DF = 4 (80 ms), and DF = 8 
(160 ms), ensuring the key signal patterns are preserved. The 
sensor data, along with temperature and humidity, are 
normalized using min-max scaling to ensure consistency 
across different ranges. The data are then labeled based on gas 
type and concentration and organized by down sampling 
factor. 

B. Time-Series to Image Conversion Techniques 

In this study, we employed three widely used time-series 
transformation techniques to convert sensor signals into 
images: 

1) Recurrence Plot (RP) 
A Recurrence Plot visualizes the similarity between 

different time points in a time-series. It transforms the 
temporal relationship into a spatial pattern by computing 
pairwise distances between time points and applying a 
threshold to determine recurrence. 

 𝑅௜,௝ = 𝛩൫𝜖−∣∣ 𝑥௜ − 𝑥௝ ∣∣൯ 

where 𝑅௜,௝ represents the recurrence state between time points 
𝑖 and 𝑗, 𝜖 is the threshold distance, and 𝛩 is the Heaviside step 
function. 

RP is effective for identifying cyclic behavior, repeated 
patterns, and chaotic structures in time-series signals, 
especially under stable periodic conditions [10]. 

2) Gramian Angular Field (GAF) 
GAF transforms a time-series into polar coordinates, 

encoding the angular relationships between data points into a 
matrix. It captures both the magnitude and direction of signal 
changes [6]. 

a) Normalize the data to [−1,1][-1, 1]: 

 𝑥
∼

௧ =
௫೟ି୫୧ (௑)

୫ୟ୶(௑)ି୫୧୬(௑)
× 2 − 1 

b) Convert to angular coordinates: 

 𝜙௧ = arccos൫𝑥
∼

௧൯ 

c) Compute the Gramian matrix: 

 𝐺௜,௝ = cos൫𝜙௜ + 𝜙௝൯ 

where 𝜙௜ = arccos(𝑥௜) represents the angular encoding of 
the signal. 

GAF highlights the temporal structure of the signal and allows 
CNNs to learn patterns based on angular relationships. 

3) Markov Transition Field (MTF) 
MTF captures the state transition probabilities of a time-

series as a matrix. It encodes the likelihood of transitioning 
from one state to another. 

a) Quantize the time-series into discrete states. 
b) Compute the state transition probability matrix: 

 𝑀௜,௝ = 𝑃൫𝑠௝ ∣ 𝑠௜൯ 

where 𝑃൫𝑠௝ ∣ 𝑠௜൯ denotes the transition probability from state 
𝑠௜ to state 𝑠௝.  

MTF effectively represents the dynamic behavior and 
transition patterns within the signal [6]. 

C. Machine Learning Models 

Two types of models were trained for comparison. The 
LSTM (Direct Learning) model was trained directly on raw 
time-series data to capture temporal dependencies and long-
term patterns. In contrast, the CNN (Image-Based Learning) 
model was trained on converted images generated from RP, 
GAF, and MTF transformations. This allowed the CNN model 
to extract spatial patterns and hierarchical features from the 
image-based representations of the time-series data. 

III. LIMITATIONS OF IMAGE-BASED TIME-SERIES 

TRANSFORMATION 

A. Information Loss During Transformation 

Transforming time-series data into images often results in 
information loss due to quantization, resolution reduction, and 
normalization processes. 

1) Quantization and Resolution Loss 
 Transforming time-series data into images often results in 
information loss due to quantization, resolution reduction, and 
normalization processes. In the quantization process, small 
variations in the original signal are often rounded off or 
eliminated, which can reduce the overall sensitivity of the 
model. Additionally, downsampling the data to reduce 
computational complexity may lead to the loss of high-
frequency components, making it difficult for the model to 
recognize detailed signal patterns. 

For example, in GAF transformation: 

a) Time-series data is normalized to [−1,1][-1, 1]: 

 𝑥
∼

௧ =
௫೟ି୫୧୬(௑)

୫ୟ୶(௑)ି୫୧୬(௑)
× 2 − 1 

b) Small variations are reduced to the same angular 
value, causing information loss. 

Consider the following time-series data: 

 [0.1,0.15,0.2,0.25,0.3] 

After GAF transformation and quantization, this may 
result in: 

 [0.0,0.0,0.1,0.1,0.1] 
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Small variations in the original data are lost due to 
quantization, resulting in a loss of distinctive features that 
could aid in classification. 

2) Clipping and Saturation 
Normalization during the transformation process can lead 

to clipping or saturation, where extreme values are forced into 
a narrow range. This compression effect results in the loss of 
information at the tails of the distribution, reducing the 
model's ability to detect outlier patterns or extreme signal 
variations. As a result, important variations in signal 
amplitude may be ignored during the learning process, which 
can degrade classification accuracy, especially for signals 
with high dynamic range. 

B. CNN’s Limited Capacity for Capturing Temporal 
Dependencies 

CNN models are primarily designed for spatial pattern 
recognition, making them less effective in capturing long-term 
temporal dependencies within non-stationary sensor signals. 
The convolutional filters in CNN models extract local features 
from 2D images, which allows them to identify spatial 
patterns efficiently. However, this local feature extraction 
process makes it difficult for CNN models to capture the 
sequential nature and long-term dependencies inherent in 
time-series data. In contrast, LSTM networks are explicitly 
designed to capture long-term dependencies by maintaining 
hidden state information over time: 

 ℎ௧ = tanh(𝑊௛௛ℎ௧ିଵ +𝑊௫௛𝑥௧) 

where: 

 ℎ௧ = hidden state at time step 𝑡   

 𝑥௧ = input at time step 𝑡 

 𝑊௛௛= weight matrix for hidden state  

 𝑊௫௛= weight matrix for input state 

The vanishing gradient problem in RNNs and LSTMs 
arises from repeated multiplication of gradients over time: 

 ப௅

பௐ
=

ப௅

ப௛೟
⋅ ∏ 𝑊௛௛

௧
௜ୀଵ  

CNN does not face this problem but also does not preserve 
temporal dependencies as effectively as LSTM networks. 
When the signal contains long-term dependencies or cyclic 
patterns, LSTM-based models tend to outperform CNN-based 
models. 

C. Inappropriate Fit of Transformation Techniques 

Each transformation technique is suitable for specific 
types of time-series patterns. The RP is effective for capturing 
cyclic and repetitive patterns. However, when the sensor 
signal lacks cyclic behavior, RP tends to generate noisy or 
random-looking plots, which can degrade classification 
accuracy. The GAF is well-suited for smooth, continuous 
changes, as it encodes angular relationships between time-
series values. However, when the signal contains abrupt state 
changes, GAF tends to smooth out those changes, thereby 
reducing the model's ability to detect sudden transitions. The 
MTF effectively represents state transitions and discrete 
events. However, when the transition probability is low, MTF 
generates sparse matrices, which limits the CNN’s ability to 
effectively learn patterns from the data. 

D. Data Complexity vs. Model Complexity 

 CNN models typically require large amounts of data due 
to their complex architecture. When the dataset is small, CNN-
based models tend to overfit, leading to poor generalization on 
unseen data. The number of parameters in a CNN model is 
calculated using the equation: 

 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 = (𝑓௪ ∙ 𝑓௛ ∙ 𝑐௜௡ + 1) ∙ 𝑐௢௨௧ 

where 𝑓௪ and 𝑓௛ represent the filter width and height, and 
𝑐௜௡ and 𝑐௢௨௧ represent the input and output channels, 
respectively. A higher number of parameters increases the 
model's complexity, which can lead to overfitting when the 
dataset size is limited. This tendency is particularly 
problematic for small datasets, where the large number of 
parameters may cause the model to memorize training data 
rather than generalize to new data. 

E. Noise Sensitivity 

While CNN models are relatively robust to noise, the 
transformation process itself can introduce additional noise. 
The RP may amplify noise in cyclic patterns, making it 
difficult to distinguish meaningful patterns from artifacts. The 
GAF may exaggerate small variations during the angular 
transformation process, leading to distorted signal 
representation. Similarly, the MTF may misrepresent state 
transitions when the input signal is noisy, which can reduce 
the model's ability to learn accurate transition patterns. 

F. Experimental Setup 

We conducted experiments using sensor signal data from 
publicly available sources. The direct learning approach 
involved training LSTM models on raw time-series data to 
capture temporal dependencies. In contrast, the image-based 
learning approach involved transforming the time-series data 
using RP, GAF, and MTF and training CNN models on the 
resulting images. This allowed CNN models to leverage 
spatial patterns extracted from the transformed images. 

Hyperparameters for CNN and LSTM models were 
optimized using grid search. Each experiment was repeated 
five times, and the average performance was reported. 

IV. RESULTS AND DISCUSSION 

The detailed classification performance of each model is 
shown in Table I. Figure 3 illustrates the confusion matrix for 
the GAF-based CNN model. The matrix shows the true and 
predicted labels for various gas types and concentration levels. 
The GAF-based CNN model demonstrates strong 
classification accuracy across different gas types with 
minimal misclassification, indicating that the model 
effectively captures key signal characteristics. 

A. Performance Comparison 

Experimental results show that CNN-based learning on 
image-transformed data outperforms direct LSTM-based 
learning under certain conditions, particularly when the signal 
exhibits well-defined cyclic patterns or state transitions.  
However, in cases involving non-stationary behavior, high-
frequency noise, or cross-sensitivity effects, direct LSTM-
based learning achieved higher classification accuracy and 
improved robustness. 

Table I shows the detailed performance metrics for each 
model. The GAF-based CNN model achieved the highest 

1850



classification accuracy of 82.5 percent, outperforming direct  
LSTM-based learning by 5.4 percent. The CNN-based models 
demonstrated stronger overall precision and recall compared 
to the LSTM-based model, particularly in signals exhibiting 
cyclic or state-transition patterns. 

TABLE I.  PERFORMANCE EVALUATION 

Method 
Accuracy 
(%) 

F1-
Score Precision Recall 

LSTM 
(Direct) 

77.1 0.75 0.76 0.74 

CNN 
(RP) 

80.3 0.78 0.79 0.78 

CNN 
(GAF) 

82.5 0.81 0.83 0.79 

CNN 
(MTF) 

78.5 0.77 0.78 0.76 

The GAF-based CNN model showed balanced performance 
across precision, recall, and F1-score, suggesting that it 
effectively captured both the magnitude and directional 
structure of the signal. The RP-based model performed well 
for cyclic patterns but underperformed when the signal was 
less repetitive. The MTF-based model demonstrated strength 
in recognizing discrete state transitions but showed reduced 
accuracy when transition probabilities were low. 

B. Why CNN Outperformed LSTM 

The CNN model demonstrated superior performance in 
recognizing spatial patterns in the transformed data, especially 
when the signal exhibited cyclic or repeating structures. The 
RP effectively captured cyclic behavior by representing the 
similarity between time points. This allowed the CNN model 
to identify repetitive patterns more effectively. The GAF 
preserved angular relationships and encoded both magnitude 
and direction, enabling CNN models to detect fine-grained 
temporal variations. The MTF provided valuable information 
about state transitions, which improved the model's ability to 
identify structured changes within the signal. 

In contrast, the LSTM model struggled with high-
frequency noise and non-stationary behavior. LSTM models 
are designed to capture long-term dependencies, but the 
presence of noise and rapid state transitions reduced their 
ability to maintain consistent hidden state information. The 
CNN model's reliance on local patterns and spatial features 
allowed it to adapt more effectively to these complex signals. 

C. Misclassification Analysis 

Misclassifications primarily occurred in signals with 
overlapping patterns or high-frequency noise. The RP-based 
model showed reduced accuracy in signals lacking cyclic 
behavior, while the GAF-based model struggled with abrupt 
state changes. The MTF-based model misclassified low-
probability state transitions due to data sparsity. A detailed 
analysis of the confusion matrix revealed that 
misclassifications often occurred in cases with similar signal 
patterns or overlapping feature sets. 

V. FUTURE WORK 

Although the proposed approach demonstrates enhanced 
performance for sensor signal classification using CNN-based 
image learning, several areas remain for future exploration. 
Future research could investigate hybrid architectures 
combining CNN and LSTM models to leverage both spatial 
and temporal pattern recognition capabilities. This approach 
may address the limitations of CNN in capturing long-term 
dependencies.  

Extending the model to work with sensor signals from 
different domains, such as biomedical signals and industrial 
sensor data, could validate the generalizability of the proposed 
approach. Future work could also focus on optimizing the 
computational efficiency of the model to enable real-time 
processing in practical applications. Furthermore, exploring 
adaptive transformation techniques that adjust dynamically to 
signal characteristics could enhance the model's ability to 
capture complex patterns. 
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