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Abstract—Identifying regions where a function lies above or
below a threshold is of significant interest to the scientific
community. Estimating function values relative to a threshold
is often framed in an active learning setting as a classification
problem. Probabilistic models like Gaussian Processes (GPs) are
often used to model the underlying function, and utility functions
are used to infer the true class at the evaluation point. In this
work, we introduce expected improvement-level set estimation
(EI-LSE) and probability of improvement-level set estimation
(PI-LSE), natural extensions of popular Bayesian optimization
acquisition functions, to level set estimation (LSE). Besides
providing theoretical guarantees on the misclassification rate, we
evaluate these methods on synthetic and real-world datasets and
compare them with other state-of-the-art LSE algorithms.

Index Terms—Level Set Estimation, Bayesian Optimization,
Acquisition Function

I. INTRODUCTION

Level Set Estimation (LSE) involves using noisy evaluations
of a function f to determine whether its true value exceeds a
specified threshold & for various inputs. Accurately partition-
ing the function’s domain is of considerable interest to many
engineering and scientific applications. For example, in [1]
the authors applied LSE algorithms to estimate geographical
regions which have a high concentration of particulate matter,
using sparse sensor data. In [2], the authors applied LSE
to segment regions with high levels of chlorophyll and also
to plan the placement of sensors to detect algae blooms.
More recently, [3] proposed adaptive methods for identifying
defective regions on material surfaces such as silicon wafers,
in contrast to point-by-point physical examination. A key
characteristic of LSE methods is their focus on achieving
optimal performance with a minimal number of evaluations.
This is essential in real-world scenarios where each evaluation
carries an associated cost.

The idea of using sparse noisy evaluations of a black-box
function is closely related to Bayesian Optimization (BO) [4],
where one seeks to find the optimum of an unknown function.
Formally, given noisy evaluations of a D-dimensional function
f, we want to find x* € argminy f(x). BO involves placing
a prior over the underlying function and using a probabilistic
surrogate model to improve the prior. An acquisition function
(AF) suggests potentially information-rich points for eval-
uation, while maintaining a balance between exploring the
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parameter space and exploiting regions near the evaluated
points.

Similar to BO, LSE also utilizes surrogate models and
adaptive AFs to classify points with respect to h. Developing
AFs for LSE generally involves borrowing concepts from
the design of AFs for BO. Popular myopic AF designs
for BO include GP-Upper Confidence Bound (GP-UCB) [5],
Probability of Improvement (PI) [6], Expected Improvement
(EI) [7] and Posterior Mean (PM) [8], among others. GP-UCB-
based methods have been prominently developed for LSE [2]
[9] [10]. These methods offer attractive theoretical guarantees
in terms of the misclassification error or the convergence rate
of the estimated level set to the true level set.

Initial work on LSE focused on placement of mobile sensors
to estimate and track contours corresponding to ideal network
conditions like minimum latency [11] [12] [13]. In [14], the
authors introduced the “straddle” heuristic to classify points
based on the distance to h and the uncertainty associated
with the point. [2] formalized the problem of LSE and used
a GP-UCB based AF to assign a confidence interval to each
point, which is updated at each iteration until the algorithm
is confident enough to classify the point in one region. The
proposed method also returns an e-accurate solution for the
true set for some desired accuracy level. Since the proposed
method was derived from GP-UCB for BO, it requires spec-
ifying a confidence parameter 3'/2, which adjusts the trade-
off between exploration and exploitation. A popular heuristic
dictates increasing this parameter with time, to promote ex-
ploring the entire parameter space. A more principled approach
for selecting 3'/2 was suggested by [15] in a BO setting,
which involves drawing it as a random sample from a chi-
squared distribution with two degrees of freedom, instead of
letting it be a function of time. [9] leveraged this approach
for LSE and proposed a “randomized straddle” AF with
theoretical bounds regarding misclassification loss in terms of
information-theoretic terms. Other works at the intersection of
BO and LSE are [16], [17].

Related work. While expected improvement (EI) and prob-
ability of improvement (PI) have been extensively studied in
standard BO, generalized extensions to LSE remain under-
explored, to the best of our knowledge. In [18], the authors
assume a squared formulation for improvement, which, al-
though natural for contour estimation, heavily penalizes points
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moderately further from h.

In this work, we introduce EI-LSE and PI-LSE, natural
extensions of EI and PI in the context of contour estimation.
We derive closed-form expressions and establish theoretical
guarantees on the misclassification rate. In particular, we
analyze their local behavior near i and prove improvement
for uncertain points. Similar to [17], we include an exploratory
term and discuss various heuristics for adjusting the associated
confidence parameter.

The rest of the paper is structured as follows: Section II
provides a brief introduction to GPs, which will be considered
as the surrogate model of choice for the rest of the work.
Section III introduces EI-LSE and PI-LSE and derives closed-
form expressions. Information-theoretic based bounds for mis-
classification rates are also derived in this section. Section
IV describes the implementation details along with results on
synthetic and real-world data. Section V concludes the work
with a brief note on future work.

II. BACKGROUND

Let f : RP — R be a black-box function that can
be evaluated at x € RP” to obtain a noisy observation
y(x) = f(x) +€,e ~ N(0,02) and let h € R be an explicit
threshold level. The aim of LSE is to partition each point x
into either a superlevel set H = {x|f(x) > h} or a sublevel
set L = {x|f(x) < h}.

Similar to BO, LSE uses probabilistic surrogate models like
Gaussian Processes (GPs) [8] or Bayesian Neural Networks
(BNNS5) [19] to reason about f. In this work, we assume f is a
sample path drawn from a zero-mean GP, GP(0, k), where k is
a covariance function, which describes the statistical properties
of the samples drawn from the GP. Given ¢ observations y,
= {y1,¥y2,...,y+} made at points X = {x1,Xa,...,X:} with
homogeneous noise variance o2, the posterior over f is also
a GP with the following mean and covariance functions:

p(x) = ki (K +021) 'y, (1)

op (x) = k(x,x) = k[ (Ki + 1) 'ki(x), ()
where [Kt]lﬂ = k‘(Xi,Xjr), 1 < ’L,j < t, kt(X) =
[k(x1,x) k(x¢,x)]

III. PROPOSED METHOD

In this section, we derive closed form expressions for EI-
LSE and PI-LSE. While in standard BO these AFs are used to
guide the sampling for global optimum identification f* [20],
in the context of LSE we should seek to find points close to
h, since identifying these points will implicitly partition the
region into H and L. Formally, given a set of observed points
{x;}!_, with corresponding function values, we should select
points which maximally reduce the current best gap to the
threshold A, which we define as follows:

g = g}gtlf(xi) — hl.

A. Probability of Improvement for LSE
Let g(x) = | f(x) — h| be our modified objective function,
which we seek to minimize and let g* be the current best
function evaluation. We define PI-LSE(x) as
PI-LSE(x) = P(g(x) < g*) = P(|f(x) = h| < g")
=Ph—g" <f(x) <g"—h) 3)

Reparameterizing in terms of z ~ N (0, 1), we get

prisein) - . (100 A g (10 st)

o(x) o(x)

where p(-) and o(-) denote respectively the posterior mean
and standard deviation functions in Eq (1), and ®,(-) denotes
the cumulative distribution function of the standard Gaussian
distribution.

B. Expected Improvement for LSE

We formulate the EI-LSE acquisition function as
BI-LSE(x) = E [max (¢" — | f(x) — h,0)]. ()

Let us consider the following two improvement scenarios. (i)
If pu(x) is above h, then the improvement can be achieved
by selecting a point x* € [f~1(h), f~1(h + g*)]. (i) If u(x)
is below h, then improvement can be achieved by selecting
a point x* € [f~(h — g*), f~1(Rh)]. Lastly, no improvement
can be achieved if 4 = h. Equation (5) can be expressed as

EI-LSE(x)
= [ max(g” = 1760) ~ BLOW ks ), 02 ()

Splitting into the two improvement scenarios and reparame-
terizing, we get

EL-LSE(x) — / MG b — () — o(x)2) - $(2)dz

Zmid

Case (i)

N /me (" = b+ p(x) + 0(x)2) - §(2)dz,

Zlow

Case (ii)

ELLSE(x) = (g7 + h — #(x))®(znin) + 2(x) — 1) Bz
- (M(X) + g* - h)q)(zlow)
+ 0 (%) [¢(210w) + & (2high) — 20(Zmia)] - 6)

C. Inhibiting exploratory behavior

Many real-world and synthetic test functions are highly mul-
timodal. Assuming a reasonable h, we would expect multiple
regions where the points fall in both H and L. Given the
current formulation of our AFs, once a region near h has been
found, the methods would have no incentive to find other such
regions.

As noted by [17], developing an intrinsically explorative
strategy remains an open problem, without resorting to a
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(a) (b)

Fig. 1. Illustration of the sampling trajectory mapped by PI-LSE with (a) 3
=0.01 and (b) 8 = 0.2

method such as the selection of points with maximum posterior
variance. To this end, we adopt a similar approach and
introduce a tuneable parameter 3, which trades off with the
posterior variance. Equations (6) and (4) are modified to get
the final acquisition functions:

PI-LSE(x) = @, (2hign) — D> (210w) + B02(x)  (7)
and

EI-LSE(x) = (9" + h — pu(x)) @ (2hign) + 2(1(x) — 1) P (2mia)
= (u(x) + 9" — h)®(z10w)
+ 0(x) [¢(210w) + B(2high) — 2¢(2mia)]
+ Bo%(x). (8)

Figure 1 shows the effect 5 has on the sampling trajectories.
The test function in the figure is a multimodal function
consisting of two Gaussian peaks and a central dip, with h
= 1.5. Applying the proposed PI AF, with 5 = 0.01, results in
the trajectory being concentrated toward the boundary found
previously and the function missing out on one of the peaks
completely. Upon increasing (3 to 2, we see that the trajectory
is much more spread out and sampling ensures that the GP
detects the true functional landscape.

The introduction of an exploratory term presents a challenge
in selecting an appropriate value for 3. We investigate three
distinct heuristics for this parameter. (1) Constant: keeping 3
constant throughout the process. (2) Incremental: [5] suggest
increasing ; logarithmically and provide theoretical guaran-
tees for regret bounds. We consider linearly increasing /3,
with each iteration to gradually promote more exploration. (3)
Stochastic draw: as shown by [15] for GP-UCB, selecting
the confidence parameter from distributions like the x? or
I'(«a, ) leads to sub-linear Bayesian cumulative regret bounds.
Following the same outline, we propose drawing /3 from a chi-
squared distribution with two degrees of freedom, 3.

D. Theoretical Analysis

Level set estimation is inherently a classification problem
with the aim of assigning points to H or L. We define the
point-wise misclassification error as

en(X) = L{#(0)>h, pn(x)<ht T L{f(x)<h, o (x)>h}

and the overall misclassification error as

Ele,] = /X P(en(x) = 1) dx.

The following theorem provides upper bounds on the overall
misclassification error for EI-LSE and PI-LSE for scalar-
valued inputs x, with the same bounds holding for vector-
valued inputs.

Theorem 1 (Convergence of Misclassification Error for
EI-LSE). For a discretized set of evaluation points {z;}¥ ,,
with probability at least 1 — 6, the expected misclassification

error satisfies
Elen] < Cy/ 2 ©)
n

for some constant C' > 0.

Let f : X — R be an unknown function defined on a
compact domain X C R9. We assume f is a member of RKHS
H} associated with kernel k, with RKHS norm || f||#, < B.
We model f with a GP and estimate the super-level set H:
x € X : pup(x) > h, given the true super-level set H : x €
X f(x) > h.

Lemma 1. With probability at least 1 - §, Vx € X

where 3, = B + \/2(y, +1og(1/6)) (Lemma 5.1, [5]).

Lemma 2. Let x1,x2,...x:_1 be the points evaluated by f.
Then

n
2

Zat71(l’t> < CiYn,s

t=1
where v, is the maximum information gain after n evaluations
and C7 > 0 (Lemma 4, [21]). Assume that at time t,
the maximum variance is afnw’t. Since Eq. (8) explicitly
encourages exploration, EI-LSE will prioritize points with
of 1 (x) = 024y, and we get

017n

mfxoi(x)g -

The proof for Theorem 1 proceeds as follows: A misclassi-
fication at point x occurs when (f(x) — h)(un(z) —h) <0
or equivalently |f(z) — pun(z)| > |f(z) — h|. Using Lemma
1, we get |f(z) — h] < Bpon(x). So the probability of
misclassification at x is bounded by:
P(misclassification at ) < P(|f(x) — h| < \/Bron(z))

with expected misclassification rate over the domain as:

Ele,] = / P(misclassification at z)dzx. (10)
x
Hence the expected error is bounded as follows:
Elen] < p({z € X : [f(2) = bl < /Bnon(x)}). (A1)

Assuming standard reproducing kernel %k being Lipschitz
continuous in its arguments, we consider f to be Lipschitz
continuous with constant L, and the measure of this region is
bounded by:

p({z € X :[f(z) = h| < /Bnow(2)}) < C2- VB Iznea))((crn(x)
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Fig. 2. Performance comparison of acquisition functions across nine benchmark functions. Each plot shows the F} score (vertical axis) progression over
iterations (horizontal axis). The inset plot shows a zoomed-in region of the final F score.

for some Cy > 0. Using Lemma 2, we know that

C’lp)/n
A/ 777, .

This allows us to finally bound the misclassification error using
the maximum posterior variance as:

Elen] < Cs - 3 /M7
n
Elen] < O/ 22
n

For different kernels, v,, values have been derived previously
[5]. This also serves as an upper bound for PI, since it lacks
an additional posterior standard deviation term in Equation 7.
We also note that this bound is equal to the bound derived for
Randomized Straddle (Theorem 4.2, [9]), further proving the
effectiveness of EI-LSE and PI-LSE.

max oy, (z) <
reX

12)

IV. EXPERIMENTS AND RESULTS

In this section, we assess the performance of EI-LSE and
PI-LSE on synthetic and real-world datasets. We compare our
methods against the following state-of-the-art AFs: (i) Strad-
dle, (ii) Level Set Estimation algorithm (LSE), (iii) Robust
Maximum Improvement for Level-set Estimation (RMILE)
and (iv) Randomized Straddle (Rand-Straddle). We also in-
clude two naive strategies for baseline performance: Random
selection of points (Random) and selecting points with the
highest posterior mean (PM). We denote the different heuris-
tics for selecting S in EI-LSE and PI-LSE as follows: Constant
S = 0.1 (EI / PI-C-LSE), incremental [3; (EI / PI-Inc-LSE),
and stochastic draw (EI / PI-S-LSE). In our experiments, we
considered a standard RBF kernel for all GP evaluations.

A. Synthetic Data

We considered six synthetic datasets for assessing the per-
formance of EI-LSE and PI-LSE. Table (I) provides a brief
description of each function and the associated h consid-
ered, with the mathematical formulation omitted due to space
constraints. For each method, 20 independent simulations
were carried out to account for simulation variability for 50
iterations for 1-D functions and 100 iterations for 2-D func-
tions. The optimizers were initialized with 10 randomly drawn
points for 1-D functions and 20 points for 2-D functions. To
quantify the classification accuracy of the methods, we used
the F-score. Figure 2 compares the performance of the AFs
on the benchmark functions. It is evident that all variants
of EI/PI-LSE deliver competitive results, with them notably
outperforming other methods on functions like Himmelblau,
Rastrigin-1D and 2D. It is also of key importance to note
that the EI-LSE variants generally outperform the PI-LSE
variants, which can be attributed to the additional exploratory
term in Equation 8. Among the different heuristics for se-
lecting /3, we observe that drawing 3 from a x3 distribution
generally offers a slightly better F score. This improvement
can be theoretically justified by considering the relationship
between the 3 distribution and the confidence regions of
GPs. When employing GP models, the squared Mahalanobis
distance between a prediction and its mean follows a chi-
squared distribution. By drawing 3 from x3, we are effectively
sampling from the natural distribution of confidence levels
around our predictions rather than using a fixed, potentially
sub-optimal value. The code for all experiments can be found
in this Github link.
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TABLE I
BENCHMARK FUNCTIONS FOR LEVEL SET ESTIMATION

Function Dim. Domain Threshold (h)
Rastrigin 1D [-5.12,5.12] 5
Himmelblau (neg.) 2D [-5,5]2 -50
Rastrigin 2D [-5.12,5.12]2 5
Bohachevsky 2D [-5,5]2 5
Branin 2D [-5,10] x [0, 15] 20
Goldstein-Price 2D [-2,2]? 50

B. Real-world data

We consider the problem of quantifying the quality of
silicon ingots in solar cells by classifying the carrier lifetime
value as above or below a threshold. Additional information
about the data can be found in [9] [22]. The function values
are offset to set the threshold to 0. To simulate results similar
to Randomized-Straddle, we use a Matern 3/2 kernel and
initialize the optimizer with a singular point. Optimization is
carried out for 200 iterations and repeated for 50 independent
trials. Figure 3 shows the Fj score against iterations. It
is evident that EI-Inc-LSE performs comparatively well, as
compared to the other methods, further proving the efficacy
of using improvement-based methods for level set estimation.

0.9

Straddle
— LSE

F1 Score
e
S

—— RMILE
J Rand-Straddle
0.6 Random
r — M
— PI-C-LSE
PI-S-LSE
05 -== PlInc-LSE
— EI-C-LSE
EI-S-LSE
--- EkInc-LSE

0.4

0 25 50 75 100 125 150 175 200
Iteration

Fig. 3. Fj score against iterations for classifying of silicon ingot carrier
lifetime value

V. CONCLUSION

In this work, we have addressed the LSE problem from
the perspective of Bayesian optimization and derived novel
improvement-based AFs, PI-LSE and EI-LSE, for LSE. We
also derive closed-form expressions and provide theoretical
bounds on misclassification rate. The experiments show the
effectiveness of PI-LSE and EI-LSE on synthetic and real-
world datasets. Future directions could involve more principled
ways of balancing exploration around the boundary regions.
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