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Abstract—We propose in this paper an analytically new con-
struct of a Diffusion Model whose drift and diffusion parameters
yield an accelerated time-decaying Signal-to-Noise Ratio (SNR)
in the forward process. This consequently reduces the number
of time steps required to converge to pure noise. It further
allows us to depart from conventional models, which typically
use time-consuming multiple runs, by introducing a parallel data-
driven model to generate a reverse-time diffusion trajectory in
a single run. Our construct cleverly carries out the learning
of the diffusion coefficients on the structure of clean images
using an autoencoder. Collectively, these advancements yield a
generative model that is at least 4 times faster than conventional
approaches, while maintaining high fidelity and diversity in
generated images, hence promising widespread applicability in
rapid image synthesis tasks.

Index Terms—diffusion models, generative models, accelerated
generation

I. INTRODUCTION

Generative diffusion models have recently emerged as pow-
erful tools for image modeling and numerous other appli-
cations [1]–[4], offering exceptional fidelity and generative
diversity [5]. In contrast to existing generative models, like
generative adversarial networks (GANs) and variational au-
toencoders (VAEs), Diffusion Models (DM) are more stable
in training and less sensitive to hyper-parameter selection [6].

While effective, the performance of Conventional Diffusion
Models (CDMs) [3], [4] entails a slow convergence, with a
quality image generation requiring in turn, a large number of
time steps, thus leading to an increased computational com-
plexity. To this end, much effort ( [7]–[13]) has been dedicated
to reducing this lengthy process. However, current models
have mostly focused on reducing the reverse trajectory by
employing sub-sampling or fast ODE solver based strategies.
In this paper, we propose an alternative approach and use
insights from statistical physics of particles to account for local
(i.e. pixel level) SNR in driving the microscopic dynamics of
the diffusion. Intuitively, one may interpret the conventional
macroscopic forward diffusion as a parallel (bundle) process
of microscopic forward diffusion processes occurring on indi-
vidual pixels in parallel with same amount of noise added to
each pixel. In our model, the forward diffusion scheduling is
dependent, as detailed later, on the initial clean pixel values
while each pixel maintains its own diffusion independent from
others. In so doing, our proposed DM leverages the structure
of clean image data to learn the drift and diffusion parameters
at a microscopic level. This is inspired by the well known

information theoretic water-pouring paradigm [14] used in
multi-channel communication systems which allocates power
to a channel in accordance with the noise-level experienced
in that channel. We demonstrate that we can achieve the
target goal of reaching isotropic Gaussian distribution on all
the pixels much faster than the conventional pixel agnostic
diffusion scheduling.

With such an image-aware forward diffusion in hand, we
proceed with a variational autoencoder (VAE) to learn the
combined diffusion schedule across all the pixels of a noisy
image. While conventional models generate the reverse trajec-
tory one step at a time, we leverage the structural information
learned in the scheduling strategy to generate the whole
reverse-time diffusion path in one go. As a result of this
strategy, we are able to accelerate the reverse-time diffusion
process by nearly an order of magnitude.

II. METHODOLOGY: IMAGE AWARE DIFFUSION

A. Motivation

In the forward direction of a conventional diffusion pro-
cess, a clean image with d pixels, represented as x0 =
[x1

0, . . . , x
d
0] ∈ Rd is diffused iteratively in T steps as

xi+1 =
√
αixi +

√
1− αiϵi, ϵi ∼ N (0, Id), (1)

where αi ∈ (0, 1), ∀ i ∈ {1, ..., T}, is a decreasing scalar
schedule, Id is an identity matrix. Consequently with large
enough T , xT ∼ N (0, Id), which indicates that the diffusion
of each pixel leads to approximately 0 SNR. The SNR
degradation in forward diffusion direction across pixels can
be parallely viewed as a dual of the water pouring algorithm
employed in multi-channel communication systems [14]. The
algorithm similarly addresses assignment of signal power
distribution across frequency channels with different ambient
noise powers to maximize SNR. Faced with our objective
of all pixels simultaneously achieving approximately 0 SNR
over a certain time interval (the total number of steps, T ), it
makes sense to diffuse higher-valued pixels at a faster rate
than lower-valued pixels. As our first innovation herein, we
propose a novel pixel-value-driven diffusion that is a departure
from the existing SOTA DMs. The advantage of this pixel-
aware diffusion over conventional pixel agnostic diffusion is
a comparatively shorter trajectory in the forward direction of
diffusion. Consequently, it shortens the corresponding reverse
trajectory based on the same diffusion schedule.
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Furthermore, the CDMs generate new samples by a reverse
diffusion process which involves sequential sampling (over i
ranging from T to 1) from the learned conditional posterior
distributions, p(xi−1|xi), with xT ∼ N (0, Id), or with a
uniformly distributed subsampling sequence, as discussed in
Denoising Diffusion Implicit Model (DDIM) [7]. The se-
quential sampling entails multiple forward passes through a
trained model, significantly increasing the over-all generation
time. Theoretically, based on the Universal Approximation
Theorem, the CDMs can also try to generate all the steps
parallelly by relying on a prohibitively large neural network,
however, it is much too difficult to train in its original format.

This highlights our second innovative contribution. We
propose a parallel generation of the reverse diffusion that rely
on a more informed prior, a rough estimate of the clean x0.
This provides some early-scale feature information of the clean
image such as image boundaries. It acts as a regularizer to our
model. This, together with our fast pixel-wise diffusion, leads
to a parameter complexity reduction thus affording a parallel
generation of reverse diffusion steps.

B. Redefining forward diffusion

For a d-dimensional vector, x0 = [x1
0, . . . , x

d
0] ∈ Rd with

xj
0 ∈ (0, 1], j ∈ {1, · · · , d} representing d pixels of a clean

normalized image, we define image scale xδ ∈ Rd as

xδ ≜ e−γx0 , (2)

where γ is a scalar hyperparameter such that xj
0 << γ < T,

and exponentiation carried out element-wise.
The diffusion schedule parameters are now vectors with

varying elements, redefined as

αi = 1− βi = x
1/T
δ , (3)

where 1 = [1, 1, · · · , 1] is a d-dimensional vector.
This is in contrast to conventional Denoising Diffusion

Probabilistic Model (DDPM) [3], in which the schedule pa-
rameters can be regarded as vectors with the same repeated
element: αC,i = 1 − βC,i = αi1, where αi is a scalar
independent of x0.

Our algorithm, scheduled per Eqn.-3, thus allows the
diffusion rate to vary across all the pixels. The resulting
reparametrized forward step dependent on x0 is written as

xi =
√
αi ⊙ x0 +

√
1−αi ⊙ ϵ̃i, (4)

where ⊙ is an element-wise multiplication. αi = e−γ ix0/T ,
i ∈ {0, . . . , T}. ϵ̃i ∼ N (0, Id).

To analyze the time trajectory of our diffusion model, we
substitute the discrete ratio i/T with a continuous variable
t ∈ [0, 1], by letting T → ∞. As a result, the discrete time-
step Eqn.-4 becomes a continuous time diffusion:

xt =
√
αt ⊙ x0 +

√
1−αt ⊙ ϵ̃t, αt = e−γ tx0/T . (5)

Proposition 1. [15] The SNR of the jth pixel at time t is:

SNR(j, t) =
(xj

0)
2

eγ t xj
0 − 1

. (6)

Eqn.-6 can be calculated using Eqn.-5. It clearly shows that
the SNR of any pixel decreases exponentially with time. The
SNR of higher value clean pixel is reduced at a faster rate
than its lower value counterparts.

For a conventional DDPM with linear schedule of βt =
at, t ∈ [0, 1], the expected trajectory can be shown [16]
to be χC(t) = E[xt] = x0e

− at2

2 . For our new diffusion
model defined in Eqn.-5, the expected trajectory is χN(t) =

E[xt] = x0 ⊙ e−
γx0t

2 . This demonstrates that our diffusion
has the advantage of a globally tunable decay rate (by setting
γ > at ∀ t ∈ [0, 1]), locally varying with pixel values.

Proposition 2. [15] The selection γxj
0 > at, ∀ j ∈

{1, · · · , d}, t ∈ (0, 1] results in

|χC(t)

dt
| < |χN(t)

dt
|. (7)

From Eqn.-6, it is clear that the SNR of any pixel decreases
exponentially with time and a higher valued clean pixel
experiencing this reduction at a faster rate.

The CDMs inject equal noise power to all pixels. Their
diffusion reaches 0 SNR state objective at a cost of an
increased number of diffusion steps. Per Proposition-2, the
proposed diffusion rate of convergence can be optimized
beyond that of conventional processes by carefully choosing
the hyperparameter γ. Fig.-1 shows a comparative progression
of pixel mean and variance across the forward trajectory to
those of other conventional diffusions.

(a) Pixel mean progression

(b) Pixel variance progression

Fig. 1: Comparison of mean (left) and variance (right) pro-
gression in forward diffusion trajectory of pixels using a single
color channel (red color) over time of the conventional DDPM
(blue) vs. our model (red).

As a result, a carefully chosen γ, achieves a faster conver-
gence of our model over the conventional DDPM model. In our

1863



experiments for CIFAR10 dataset images of 32×32 resolution,
we fixed T = 200 and γ = 20. For CelebA dataset images
of 128× 128 resolution, we fixed these values to 500 and 50
respectively. These values were chosen by manually applying
forward diffusion using Eqn.-5 over training set images, and
verifying pixel mean and variance approach 0 and 1 over
enough steps.

C. Modified Reverse Diffusion

In conventional DDPM based models [3], the goal is to
generate a sample which has the same marginal probability as
that for x0. This is achieved by a reverse diffusion process
which includes sequential sampling (over i ranging from T to
1) from the learned conditional posterior distributions:

pϕ(xi−1|xi) = N (µ̃ϕ(xi, i)), β̃iI),

µ̃ϕ(xi, i) =
1

√
αj

⊙

(
xi −

1−αj√
1−αj

⊙ ϵϕ(xi, i)

)
,

β̃C,i =
1−αi−1

1−αi
⊙ βi,

(8)

where ϵϕ(xi, i) is the denoising output produced by a neural
network with learned parameters, ϕ.

The sampling posterior for our generative algorithm would
additionally require an estimate of image scale xδ = e−γx0

as the diffusion scheduling parameters. At first glance, this
appears to be a counter-intuitive task as acquiring x0 through
a stochastic trajectory seems to require knowledge of x0 itself.
To avoid this dilemma, we take advantage of the observation
that as a result of exponentiation and the large value of γ, xδ

or an approximation thereof only provides coarse structural
information. With fewer fine details, it provides some prior
information of the image structure. Consequently, we exploit a
VAE, a less complex denoiser to estimate Gθ(xi, i) = x̂δ ≈ xδ

from a noisy image xi. The requirement on parameter com-
plexity of Gθ(xi, i) can be kept low because xδ lacks finer
details (unlike x0). The image scale, xδ and γ are independent
of time-steps. Once xδ is estimated, the approximations of the
factors αi

j and αj
i in Eqn.-8 can also be readily calculated

to further recover x0.
Fig.-2 illustrates the comparison of the real vs generated xδ

via the VAE decoder applied on pure noise samples for CelebA
dataset. The structural similarity (SSIM) index between real
and estimated images wasin the range [0.86, 0.99] for both
xδ and αi (the higher the better, with 1 signifying perfect
similarity) across different values of i.

Fig. 2: Real and generated xδ examples for CelebA (A
database of human faces) dataset.

D. Reverse-time diffusion modelling

To proceed with a reverse-time diffusion we estimate x̂δ ,
βi, αi and αi as discussed in the previous subsection. In
conventional designs the same trained network is used to
generate the reverse trajectory samples by using previously
generated sample and next time-step positional encoding as
input. This provides evidence that the architecture has a
sufficient capacity to process the semantic information hidden
in the noisy image at any time-step. The overall architecture
of our parallelized reverse diffusion model using a U-net
architecture, is shown in Fig.-3. In adapting it to our proposed
methodology, the following modifications are in order:

1) We also fuse (by addition to feature maps) x̂δ predicted
from the image scale autoencoder Gθ(xi, i).

2) We modify the structure of the last layer of the model
to predict the additive noise, Zk for all the preceding
time-steps (k ∈ {i − 1, · · · , 1}) in different channels
of the last layer. While the one time complexity of our
model is higher than existing competing models, unlike
the CDMs, only a single execution is required of the
trained model to obtain a clean image x0. This thus
results in an overall reduction in sample generation time.

Fig. 3: Reverse diffusion model architecture

The model Rϕ(xi, x̂δ, i) (with trainable parameters, ϕ)
receives a noisy image xi, its predicted scale x̂δ and time
step information i as input and predicts additive noise for all
the steps of the forward diffusion in parallel. These predictions
can then be used to generate the reverse trajectory using Eqn.-8
with ϵϕ(xj , j) replaced by predictions, Zj of the model.

The last layer of the model has T feature maps. The jth

feature map, Zj , j ∈ J = {1, · · · , T}, is:

Zj = Mj ⊙ Gj(ZD,K ,P(i),H (x̂δ);ϕj), (9)

where ϕj ⊂ ϕ. Mj is a channel mask with 1′s if j < i,
and 0′s otherwise. This ensures that only predictions for time-
steps preceding i are made. Gj(.) is a feature map implemented
using a small neural network. The fusion of x̂δ allows us to
reduce the parameter complexity of Gj(.). P(i) is a non-linear
mapping of the input time-step i with the same dimensions as
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a single channel of the decoder output, ZD,K and H (x̂δ) is a
non-linear mapping of x̂δ . This mapping is fused with ZD,K ,
the decoder output, before being fed to Gj(.).

All T optimization objective functions are similar to those
used in conventional DDPM [3]:

L(ϕ, j) = Ei,xi
[||Zj − ϵ̃j ||22], j ∈ {1, · · · , T} (10)

For j > i, L(ϕ, j) is fixed to 0 as a consequence of the same
argument of using the mask Mj . The parameters of the com-
mon network backbone, ϕb = {ϕl|ϕl ∈ ϕ, ϕl /∈ ϕj ,∀j ∈ J},
are trained by all the L(ϕ, j ∈ J = {1, · · · , T}), whereas each
parameter ϕj of a particular Gj(.) is trained by only optimizing
its particular loss function L(ϕ, j), and the opimatization is
obtained in parallel.

The procedure for generating the final clean image is shown
in Algorithm 1. It is similar to the one used by [3], the
difference being that the scheduling parameters are calculated
from x̂δ and only a forward pass through the model Rϕ(.) is
required to predict all denoising terms ϵϕ(., i) in Eqn.-8, as
they are available in parallel as Zj .

Algorithm 1 Sampling algorithm

Require: Pre-trained scale autoencoder Gθ(.) and reverse
diffusion model, Rϕ(.).

Input: Noisy image xi and time-step i of the forward diffu-
sion

Output: Clean image x̂0

1: Scale estimate: x̂δ = Gθ(xi, i)

2: αj = exp

{
(
1

T
log (x̂δ))

}
, ∀j ∈ 1, · · · , T

3: αj = exp

{
(
j

T
log (x̂δ))

}
, ∀j ∈ 1, · · · , T

4: β̃j =
1−αj−1

1−αj
(1−αj), ∀j ∈ 1, · · · ,T

5: Reverse diffusion noise predictions: Z = {Z1, · · · ,ZT } =
rϕ(xi, x̂δ, i)

6: Initialization j = i, x̂j = xi

7: while j > 0 do
8: z ∼ N (0, I)

9: x̂j−1 =
1

√
αj

⊙

(
x̂j −

1−αj√
1−αj

⊙ Zj

)
+
√

β̃j ⊙ z

10: j = j − 1
11: end while
12: return x̂0

III. EXPERIMENTS AND RESULTS

The models were trained on Cifar10 and CelebA datasets
for fair comparison with other models. The images were first
normalized to the range (ϵ, 1]. Note that a small ϵ = 4×10−3

is added to all xj
0 to ensure their values are greater than 0 so

that αi vary with i. Time-step inputs to the modified U-net
for the reverse diffusion model were encoded using sinusoidal
positional embedding [17].

Fig.-4 shows some generated examples for CIFAR10 and
CelebA datasets. While recent improvements are mostly fo-
cusing on speeding up the reverse diffusion by implementing

faster solvers, improvements on forward diffusion are limited.
Fast solvers-driven methods like [18] have a fast computational
goal which is different from our diffusion approach. SlimFlow
[19] is a framework that trains compact, one-step generative
models by distilling knowledge from large diffusion models
using a modified Rectified Flow framework [20]. DeepCache
[21] accelerates the generation process by caching high-level
features from previous steps and updating only low-level
features.

Table I illustrates generative performance of these models
on the CIFAR10 dataset using trainable parameter complexity,
FID scores and execution time. We compared our algorithm
to a similarly discrete time model DDPM [3] based on a
Stochastic Differential Equation(SDE) based model introduced
by Song et al. [4], and its accelerated versions, namely DDIM
[7], Fast DPM Solvers [18], Slimflow [19] and DeepCache
[21]. We used the best DeepCache model (generation quality)
which caches the high level features on every other step (N=2).
Table II shows the comparisons for CIFAR10 dataset. Training
and inference were performed on a single NVIDIA Tesla V100
SXM2 32 GB GPU. Most research efforts, such as [18]–[23],
focus on fast sampling using fast ODE solvers applied to the
backward diffusion of SDE based model. A continuous time
version of our model will appear in a future paper as it is
out of scope of the present paper due to limited space. These
fast solvers will be compatible and can be applied to our
continuous time model as well, providing further acceleration.

While the image quality of our model is competitive, its
execution time is at least 4 times less than that of DDPM.
They are slightly less than DDIM and Fast DPM solvers even
when more time steps are used, without any compromise on
the generation quality. Unlike the SDE-based model that needs
orders of magnitude more steps due to MCMC subsampling
corrections, our model achieves comparable performance with
just 200 time-steps and a 500-step trajectory. Our model has
more trainable parameters due to the usage of image scale
estimation and the multiple parallel channels. However, this
burden is compensated by just a single forward pass required
by our model. Even simplified and distilled models like [19]
and [21] with reduced execution time, produce inferior quality
results, with our model exhibiting a better generation quality
vs time trade-off.

Increased data complexity in the case of higher resolution
images will undoubtedly increase the model complexity for
all algorithms. However, as is evident from the parameters
count in Tables I and II, moving from 32 x 32 to 128 x 128
resolution only resulted in approximately 2x increase in the
number of trainable parameters, which is minor in comparison
to conventional diffusion models.

IV. CONCLUSION

We have introduced in this paper, a novel forward diffusion
model and backward recovery which significantly improve the
convergence speed and computational efficiency limitations of
conventional models. With an overall accuracy and execution
time advantage over conventional models, a systematic selec-

1865



(a) CIFAR10 examples

(b) CelebA examples

Fig. 4: Image generation examples

Cifar10 generative performance
Model #Param(M) #Steps FID Time(in sec)
DDPM 35.7 1000 3.28 1.26

SDE based 31.4 1000 2.99 47.67
DDIM 35.7 10 13.36 0.03
DDIM 35.7 100 4.16 0.33
DDIM 35.7 1000 4.04 3.22

DPM Discrete Solver 35.7 10 5.37 0.02
DPM Discrete Solver 35.7 100 3.94 0.15
DPM Discrete Solver 35.7 500 3.41 0.76

DeepCache 35.7 (N=2) 100 4.56 0.1
SlimFlow 15.7 1 5.02 0.004

Our Model 71.5 200 3.15 0.3

TABLE I
CelebA generative performance

Model #Param(M) #Steps FID Time(in sec)
DDPM 78.7 1000 3.51 10.19

SDE based 65.6 1000 3.20 246.69
DDIM 78.7 10 17.33 0.53
DDIM 78.7 100 6.53 5.55
DDIM 78.7 1000 3.51 48.44

DPM Discrete Solver 78.7 10 4.85 0.04
DPM Discrete Solver 78.7 100 4.52 0.33
DPM Discrete Solver 78.7 500 3.79 1.48

Our Model 145.5 500 3.25 1.3

TABLE II

tion of a hyperparameter γ figures in our future plan [15].
This entails considering the joint the data/pixels distribution.
Uncovering the control of a diffusion process for a system of
interacting particles [24], [25] in lieu of independent forward
diffusions lies, we believe, at the center of this challenge.
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