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Abstract—Deep Reinforcement Learning (DRL) has found suc-
cessful applications across various domains, including robotics,
healthcare, finance, and autonomous systems. However, in real-
world applications, DRL agents often struggle in noisy and
volatile environments, leading to instability during training
and inconsistent performance. To address these challenges, we
propose a novel approach that enhances the robustness of
DRL agents by incorporating contractive loss in their training
procedure, inspired by Contractive Auto-Encoders. Our method
penalizes the sensitivity of learned representations to small input
perturbations, thereby rendering the extracted features more
resilient to noise and minor fluctuations in the environment.
We evaluate the performance of our approach on tasks, namely
financial trading and CartPole, characterized by significant
variability and uncertainty, demonstrating notable improvements
over traditional DRL agents trained without contractive loss.
Furthermore, we observe that integrating a contractive loss
results in more stable policy behaviors, which is particularly
beneficial in settings where erratic actions may be costly or
harmful. Overall, our findings suggest that incorporating a
contractive loss into DRL training can yield more robust and
reliable agents, especially in noisy, real-world conditions.

Index Terms—Deep Reinforcement Learning, Contractive
Loss, Financial Trading

I. INTRODUCTION

Deep Reinforcement Learning (DRL) has driven significant
breakthroughs across a variety of domains, ranging from
robotics and autonomous vehicles to healthcare and financial
trading. Early milestones included Deep Q-Networks (DQN),
which surpassed human-level performance in Atari games
by combining convolutional neural networks with Q-learning
[1], [2], paving the way for more advanced algorithms. Sub-
sequent progress led to policy gradient-based approaches,
such as Deep Deterministic Policy Gradient (DDPG) [3],
Trust Region Policy Optimization (TRPO) [4], and Proximal
Policy Optimization (PPO) [5], that enabled the application
of reinforcement learning to continuous action environments,
enhancing algorithm stability and efficiency.

Though these diverse applications highlight DRL’s capacity
for adaptability and real-time decision making, the method’s
potential extends even further. In the realm of financial trading,
DRL reframes trading from mere price prediction to active
decision making, enabling agents to learn sequential strategies
that maximize cumulative profit rather than only predictive

accuracy [6], [7], [8]. Algorithms like PPO have shown par-
ticular promise, as they can rapidly adapt to shifts in dynamic
markets, such as those encountered in cryptocurrency trading
and improve decision making [9], [10], [11]. As a result, DRL
has gained traction in automated trading systems, offering
enhanced flexibility and better alignment with the ultimate
objective of profit under volatile, noise-prone conditions.

Despite the impressive progress of DRL in various fields,
maintaining stability and robust performance in noisy or
volatile environments remains a major hurdle. In contexts
like financial trading, where abrupt price movements, volatile
market dynamics, and sporadic external events are the norm,
agents can struggle to distinguish transient fluctuations from
truly meaningful signals. The inherent sensitivity of learned
models to these input fluctuations can lead to overfitting or
inconsistent behaviors, meaning that even an agent that per-
forms well during backtesting may falter when confronted with
real-world conditions. Addressing these concerns is imperative
for unlocking the full potential of DRL, whether in finance or
other data-intensive settings where noise and volatility pose
significant risks. In financial trading, a novel online probabilis-
tic knowledge distillation approach has been shown to improve
training stability by transferring knowledge from an ensemble
teacher to a single student in real time [12]. Many studies also
target robustness through regularization and improved feature
extraction. For instance, contrastive representation learning can
help DRL agents better disentangle useful signals from noisy
inputs [13], while denoising-based approaches aim to enhance
networks’ ability to generalize in volatile financial markets
[14]. Such methods share the common goal of mitigating
detrimental perturbations and maintaining stable performance
under uncertain conditions.

A complementary perspective comes from Contractive
Auto-Encoders (CAEs) [15], which introduce a penalty on
the sensitivity of learned representations to input variations.
Building on this concept, in this work, we propose an approach
that integrates a contractive loss term into the Proximal Policy
Optimization (PPO) algorithm equipped with Long Short-Term
Memory (LSTM) based actor and critic networks for discrete
action tasks. By penalizing excessive sensitivity to small input
perturbations, an idea inspired by Contractive Auto-Encoders,
this contractive loss encourages more stable latent repre-
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sentations, reducing overfitting and improving generalization
in volatile settings. The resulting agents show fewer erratic
shifts and more consistent performance under abrupt changes,
showcasing resilience to noise and stabilizing training. We
evaluate the effectiveness of our method in both financial
trading, where volatile markets often undermine conventional
DRL agents, and classic control tasks in the Gymnasium
environment, showcasing how our loss term can yield robust,
consistent policies across a range of noisy, uncertain domains.

The rest of the paper is structured as follows. The proposed
method is introduced and analytically derived in Section
II, breaking down the motivation behind our methodology.
The experimental setup and the experimental evaluation are
provided in Section III. Finally, the conclusions of the paper
and the potential avenues for future research are discussed in
Section IV.

II. PROPOSED METHOD

A. Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) [5] is a policy-gradient
algorithm designed to improve stability and sample efficiency
in on-policy settings. Let πθ(at|st) denote the policy, parame-
terized by θ, which outputs the probability of selecting action
at in state st at time step t. PPO seeks to maximize the
expected advantage while constraining the updated policy to
remain close to the old policy, using a clipped surrogate loss:

LCLIP (θ) = −Et [min (rt(θ)At, clip (rt(θ), 1− ϵ, 1 + ϵ)At)] ,
(1)

where
rt(θ) =

πθ(at|st)
πθold(at|st)

. (2)

Here, At ∈ R is the estimated advantage, typically computed
via a value function or the generalized advantage estimator
(GAE), and ϵ > 0, typically set to 0.2 is a hyperparameter
that controls the allowable deviation between the old and the
new policy.

In addition to the surrogate loss LCLIP, the objective of the
PPO algorithm includes a value loss term LVF, to train the
critic, and an entropy term H(πθ), that encourages exploration:

Ltotal(θ) = LCLIP (θ) + c1 L
VF(θV )− c2H(πθ), (3)

where LVF(θV ) is the loss term for training the critic and
H(πθ) is the policy’s entropy in state st, which promotes
stochasticity and exploration. The coefficients c1 and c2 are
hyperparameters that weight the critic loss and the entropy
term, respectively.

B. Recurrent Actor-Critic Architecture

A recurrent actor-critic architecture trained using PPO is
used to address tasks with temporal dependencies or partial
observability, commonly encountered in both financial trading
and classic control tasks. The input feature vector xt is fed into
a recurrent neural network at time step t, typically an LSTM,

which maintains hidden and cell states (ht, ct) over time to
capture sequential patterns. In the actor network, the LSTM
output zt proceeds to a fully connected layer (with softmax)
that outputs a probability distribution over discrete actions.
Simultaneously, the critic network follows a similar process,
but its LSTM output is passed through a fully connected layer
to produce a scalar value function Vψ , parameterized by the
model’s parameters ψ. By maintaining separate parameters for
the actor and critic, the method avoids potential interference
from shared weights, allowing each network to specialize in
its respective task.

C. Contractive Loss on LSTM Representations

The key contribution of our method is the introduction of
a contractive term that penalizes the sensitivity of the LSTM-
based representation to small input perturbations. Inspired by
Contractive Auto-Encoders (CAEs) [15], which penalize the
Jacobian of hidden-layer representations with respect to their
inputs, we apply a similar penalty directly to the square of the
LSTM output of the actor. Let xt represent the input features
at time t, and let h(xt) denote the elementwise square of the
LSTM output of the actor. We define the contractive loss as:

Lcontractive = ∥∇xt
h(xt)∥F =

√√√√∑
i,j

(
∂ hi(xt)

∂ xtj
)2, (4)

where ∥ · ∥F is the Frobenius norm, hi(xt) is the i-th
component of h(xt), and xtj is the j-th component of the
input feature vector xt. A hyperparameter λ scales this term,
controlling the degree to which the model is encouraged to
remain invariant to small perturbations in xt.

D. Overall Objective

We integrate the contractive loss into the PPO objective as
an additional regularization factor:

Jtotal = LCLIP (θ) + c1 L
VF(θV ) − c2H(πθ) + λLcontractive.

(5)
where the agent ultimately aims to minimize Jtotal, effectively
balancing policy improvement, value estimation, exploration,
and robustness to input perturbations. By adjusting c1, c2,
and λ, one can emphasize different facets of performance and
representation stability.

III. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our proposed
contractive loss integrated into the recurrent PPO algorithm
across (i) a challenging financial trading environment, char-
acterized by highly volatile market conditions and discrete
trading decisions [16], and (ii) the classic CartPole control
task [17], augmented with Gaussian noise in state observations
to simulate instability. These domains highlight the method’s
capacity to stabilize training and improve policy robustness
under noisy or rapidly changing conditions.
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A. Financial Trading

1) Dataset and Preprocessing: The dataset used in
the conducted experiments consists of the OHLCV
(Open, High, Low, Close, and Volume) information for
14 cryptocurrency-to-stablecoin pairings at a minute-to-
minute frequency. The specific pairs include XRP/USDT,
XMR/USDT, ATOM/USDT, VET/USDT, BTC/USDT,
BTCB/USD, ETH/USDT, NEO/USDT, EOS/USDT,
ETC/USDT, ADA/USDT, WAVES/USDT, XLM/USDT,
and TRX/USDT. For the conducted experiments, the data
were sampled on an hourly basis starting from 5 A.M. on
August 17th, 2017, and ending at 6 A.M. on February 12th,
2022. Although all the pairs in the dataset end at the same
time, not all of them start at the same time. We split the
dataset into train/test sets, where the testing period begins on
March 15th, 2021. The testing period was selected to lead
to a zero profit for a buy-and-hold trading strategy, avoiding
evaluation in a constantly trending period and creating a more
challenging evaluation setup.

The feature extraction process involves calculating the per-
centage changes between the high, low, and closing prices of
consecutive time intervals, providing a concise representation
of price movements. These features are further normalized
using z-score normalization, trimmed to limit extreme values,
and included alongside a one-hot encoded representation of
the market agent’s position (no position, buy, or sell) as part
of the agent’s observation at each time interval.

2) Model Architecture: We adopt a recurrent Proximal
Policy Optimization (PPO) architecture with separate Actor
and Critic networks. Each network is composed of an LSTM
layer with 32 hidden units for feature processing and a linear
position encoder with 10 neurons for positional inputs. The
outputs of the LSTM and position encoder are concatenated
and passed to a base MLP with 32 neurons, SiLU activation
[18], and 0.2 dropout, followed by the final linear heads with
dropout 0.2. The Actor 3-neuron head produces logits for the
three possible trading actions (buy, hold, sell), while the 1-
neuron Critic head generates a single value estimate.

We set the PPO clipping threshold ϵ in Eq. 1 to 0.2, while
c1 and c2 in Eq. 5 were set to 1 and 0.02, respectively. The
hyperparameter λ for the contractive loss was fixed at 0.3
during all experiments. The learning rate is 5 × 10−5, the
batch size is 32, the number of parallel environments is 128,
and training is conducted for 2000 epochs. We train the agent
with the RAdam optimizer [19].

3) Evaluation Metrics: We evaluated the agent’s perfor-
mance using the Profit and Loss (PnL) metric, a widely
adopted measure in trading systems. A commission penalty
of 2 × 10−5 is applied to reflect real-world trading scenarios
and discourage overly frequent trades.

PnL =

N∑
t=1

δtpt − |δt − δt−1|c, (6)

where N denotes the total duration of the back-testing period
(number of time-steps), pt is the return at time step t, c is the

commission paid for realizing profits/losses and δt is an index
variable used to indicate the current position, which is defined
as:

δt =


−1, if agent holds a short position at time-step t
1, if agent holds a long position at time-step t
0, if the agent is not in the market at time-step t

.

(7)
As a baseline, we compare the performance of our proposed

method against the standard PPO algorithm without contrac-
tive loss, highlighting the improvements in generalization and
robustness. Additionally, the impact of noise and volatility on
the agent’s decisions and outcomes is analyzed to assess its
resilience in challenging environments. In each experiment,
the performance of each method was evaluated during the
train and test period, and the Profit and Loss (PnL) for both
was reported as the mean PnL across five runs executed
with distinct random seeds to mitigate variance caused by
initialization or stochasticity in the training procedure.

4) Results: The mean and standard deviation of cumulative
PnL for both the training and testing periods is reported in
Table I, comparing our proposed method against the baseline.
While the baseline achieves a higher training PnL (84.24 ±
2.46) compared to the proposed method (29.05 ± 13.12), it
struggles in testing conditions, achieving a significantly lower
test PnL (14.40 ± 1.49). These findings indicate overfitting,
as the baseline fails to generalize to unseen, noisy data. In
contrast, the proposed method demonstrates a much higher
test PnL (36.07± 14.11), highlighting its ability to generalize
more effectively to unseen data and better navigate the noisy,
volatile market conditions.

TABLE I: Mean and standard deviation of train and test PnL
after training within the financial trading environment

Method Test PnL Train PnL
Baseline 14.40± 1.49 84.24± 2.46

Proposed Method 36.07± 14.11 29.05± 13.12

To further assess robustness, we introduce artificially aug-
mented noise via temporal shifts in the input data before
feature extraction, ranging from [−15, +15] minutes. For
each shift, we compute the mean cumulative PnL for the
training and testing periods after the agents’ training, as
illustrated in Fig. 1a and 1b. Our proposed method exhibits
notable stability in performance regardless of temporal shifts,
maintaining a relatively consistent level of cumulative gains, as
shown in Fig. 1b. In contrast, the baseline displays significant
fluctuations when the inputs are shifted, suggesting greater
sensitivity to noise during training. Similarly, the proposed
method maintains superior stability and performance, with the
PnL curve showing relatively higher resilience to temporal
shifts compared to the baseline, as shown in Fig. 1a.

B. CartPole Environment
1) Environment: The CartPole environment was chosen for

its simplicity, widespread use as a benchmark for reinforce-
ment learning (RL) algorithms, and its ability to train fast.
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(a) Mean PnL for testing period for different input data shifts.

(b) Mean PnL for training period for different input data shifts.

Fig. 1: Mean cumulative PnL for different temporal shifts
in input data during both testing (a) and training (b) period.
The x-axis represents the applied temporal shift in input data,
ranging from [−15,+15] minutes and the y-axis denotes the
mean cumulative PnL.

The environment represents a classic control problem where a
pole is attached to a cart moving along a frictionless track. The
agent’s objective is to balance the pole by applying left or right
forces to the cart. The environment provides a 4-dimensional
state space consisting of cart position (bounded between -4.8
and 4.8), cart velocity, pole angle (bounded between -24 and
+24 degrees), and pole angular velocity. The action space is
discrete with two possible actions: pushing the cart left (0) or
right (1). An episode terminates if the pole angle exceeds ±12
degrees, the cart position exceeds ±2.4 units, or the episode
length exceeds 500 steps. A reward of +1 is given for each
timestep the pole remains balanced.

2) Model Architecture: We adopt a recurrent Proximal
Policy Optimization (PPO) architecture with separate Actor
and Critic networks. Each network begins with a feature ex-
tractor that flattens the 4-dimensional state input. The flattened
features are processed through parallel LSTM layers, each with
64 hidden units, enabling separate temporal processing for the
Actor and Critic. The LSTM outputs are fed into MLPs, each
containing a hidden layer of 64 neurons with ReLU activation.
The Actor network ends in a 2-neuron head producing logits
for the two possible actions (left/right), while the Critic head
outputs a single neuron for state-value estimation.

We configure the PPO algorithm with the optimized hy-
perparameters from RL-Baselines3-Zoo [20] with a clipping
threshold ϵ of 0.2, an entropy coefficient c2 of 0.0, a value
function coefficient c1 of 0.5 and a hyperparameter for the

contractive loss λ to 0.3, according to the Eq 5. Training
uses the Adam optimizer with a learning rate of 1 × 10−3

and the training process continues until reaching 100,000 total
timesteps. Each update consists of a rollout collection phase of
32 steps across 8 parallel environments, followed by 20 epochs
of policy optimization on the collected data with a batch size
of 256.

3) Evaluation Metrics: Performance was measured using
episodic rewards, which represent the cumulative rewards
obtained by the agent during an episode. As a baseline, we
compare the performance of our proposed method against the
standard PPO algorithm without contractive loss, highlighting
the improvements in generalization and robustness. To assess
the robustness of the proposed method, the evaluation is con-
ducted under both normal conditions and with added Gaussian
noise to the state observations.

During training, the agent’s performance was evaluated
every 10,000 timesteps by running 10 episodes with the current
policy. The reported scores represent the mean and standard
deviation of these evaluation episodes, providing a consistent
measure of the agent’s performance throughout training. To
ensure statistical reliability, each experiment is repeated five
times with distinct random seeds. The reported results include
the mean and standard deviation of episodic rewards across
these runs, highlighting both the average performance and the
stability of the learning process.

4) Results: To assess the robustness of the proposed
method, we inject dimension-specific additive Gaussian noise
into the observations at each step of the CartPole environment.
Small perturbations (σ = 0.01) are used for the sensitive pole
angle, while more moderate perturbations are injected for the
unbounded velocities (σ = 0.5) and cart position (σ = 0.1,
approximately 2% of the range). The noisy observations are
clipped to respect the physical bounds of the environment
for cart position [−4.8, 4.8] and pole angle [−0.418, 0.418]
radians.

The performance of the proposed method and the baseline
are summarized in Table II and Fig. 2a and 2b, which
illustrate the episodic reward (score) over training timesteps
under normal and noisy conditions, respectively. Under normal
conditions, the proposed method (PPO-LSTM Contractive)
achieves perfect performance, maintaining an episodic reward
of 500± 0, while the baseline scores 453± 42. Although the
baseline also converges to high rewards, it exhibits greater
fluctuations during training, suggesting less consistent policy
learning. This demonstrates that the contractive loss improves
stability and convergence, resulting in consistent, optimal
performance.

Interestingly, the baseline performs slightly better under
noisy conditions (469 ± 26) than under normal conditions
(453 ± 42). This counterintuitive result may indicate that the
noise introduces a form of implicit regularization, preventing
the baseline agent from overfitting to specific features of
the normal environment. In essence, the noise may force the
baseline to generalize better, leading to improved performance.
In comparison, the proposed method (PPO-LSTM Contractive
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TABLE II: Mean and standard deviation of episode rewards
for different PPO variants

Method Noise Episode Reward
Baseline No 453± 42

Proposed Method No 500± 0

Baseline Yes 469± 26

Proposed Method Yes 489± 10

(a) Episodic reward over training
timesteps under normal condi-
tions.

(b) Episodic reward over train-
ing timesteps under noisy con-
ditions.

Noisy) not only achieves a higher mean reward (489 ± 10)
under noisy conditions but also exhibits significantly reduced
variability. This demonstrates that the contractive loss enables
the agent to benefit from the noise-induced regularization
while maintaining stability and robust performance.

IV. CONCLUSION

In this paper, we introduced a contractive loss term into the
recurrent PPO algorithm to improve the stability and robust-
ness of DRL agents in noisy and volatile environments. Ex-
perimental results across financial trading and the CartPole en-
vironment demonstrated the efficacy of the proposed method,
with significant improvements in generalization, reduced vari-
ability, and more consistent performance compared to the
baseline. The contractive loss enabled agents to achieve higher
test rewards and better handle noise, particularly in challenging
scenarios. These findings suggest that the proposed approach
provides a principled solution for enhancing the reliability
of DRL agents, making it a promising avenue for future
research and real-world applications. A promising direction
for future research is the expansion of the proposed method to
continuous action tasks, enabling evaluation in more complex
control environments. Furthermore, the integration of the con-
tractive loss into alternative DRL algorithms like Soft Actor-
Critic (SAC) and TD3 could reveal its effectiveness across
different training dynamics and policy architectures. Finally,
applying the method to real-world problems characterized by
higher levels of noise and uncertainty, such as robotic control
or energy system optimization could further demonstrate its
robustness and broaden its range of applications.
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