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Abstract—Inverse problems involve reconstructing clean im-
ages from degraded observations. Maximum a Posteriori (MAP)
estimation reconstructs the most probable source image from
noisy measurements. When combined with Plug-and-Play (PnP)
priors defined by an image denoising algorithm, MAP estimation
yields high-quality reconstructions. In contrast, Diffusion Models
(DMs) address inverse problems by sampling from the posterior
distribution using score functions trained on images perturbed by
Gaussian noise. Prior work reformulated diffusion sampling as
Deep Equilibrium (DEQ) models but did not fine-tune DMs for
inverse problems. This work introduces MaximUm a PostEriori
Training (MUPET), a framework that leverages PnP gradient
descent to enable DEQ fine-tuning of DMs on inverse problems.
By refining a generative prior at the fixed-point of MAP estima-
tion, MUPET enhances image restoration via posterior sampling
while maintaining quality when sampling from the prior.

Index Terms—Inverse Problems, Diffusion Models, Posterior
Sampling, Generative Methods, Deep Equilibrium Models

I. INTRODUCTION

Inverse problems in imaging deal with the reconstruction
of lost information from corrupted images. Diffusion Models
(DMs) have recently been used to generate reconstructions
with high perceptual quality [1]–[3]. Here, we investigate
whether DM-based reconstruction benefits from Deep Equilib-
rium (DEQ)-based training on inverse problems, an approach
that has improved Plug-and-Play (PnP) reconstruction methods
[4]–[8].

For this paper, we consider inverse problems (e.g., super-
resolution or completion) of the form

y = Ax̂+ σnε, (1)

where x̂ ∈ Rd is the ground-truth image, sampled from the
prior distribution pdata. Here, A ∈ Rd×d′

is the degradation
matrix and ε ∼ N (0, I) is Gaussian noise scaled by standard
deviation σn > 0, where d, d′ ∈ N. N (0, I) denotes a
multivariate Gaussian distribution with mean 0 and covariance
matrix I , where the dimensionality is clear from the context.
For this work, we consider algorithms that leverage knowledge
of the degradation matrix A as well as the noise-level σn.

Inverse problems as in (1) are commonly ill-posed and need
regularization involving prior knowledge. When searching for
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the image that maximizes the posterior p(· | y), this leads to
the Maximum a Posteriori (MAP) estimation problem

x̂MAP = argmin
x∈Rd

1

2
∥Ax− y∥22 + σ2

nR(x), (2)

where ∥·∥2 is the Euclidean 2-norm. The minimization in (2)
balances data fidelity ∥Ax−y∥22 with the regularization term
R(x) := − log pdata(x), representing the prior distribution
pdata.

Plug-and-Play (PnP) methods [9], [10] solve MAP esti-
mation problems via the use of pre-trained or hand-crafted
priors for the regularization in iterative algorithms. One such
algorithm is the PnP gradient-descent (GD) [9]

gθ(x) := x− η
(
AT (Ax− y) + σ2

nGθ(x)
)
, (3)

for input x ∈ Rd with step-size η > 0. Gθ serves as prior
regularization with parameters θ, representing −∇ log pdata
[8], [9], the gradient of the regularizer R in (2). Commonly,
Gθ is trained in the context of a Gaussian denoiser, leading
to excellent reconstructions [9]. For PnP approaches, Gθ

is trained independently of any inverse problem. Thus, the
resulting PnP is highly general but can be further improved
via DEQ models [4]–[8] by training the whole iterative method
on its fixed-point, i.e. the MAP estimate. Furthermore, refining
a PnP algorithm via DEQ on a range of inverse problems leads
to improved multi-task reconstruction performance [7], [8].

Diffusion Models (DMs) [1]–[3], instead, sample from the
posterior p(· | y) of an inverse problem. They are trained to
reverse a process that progressively corrupts a clean image
with Gaussian noise, allowing for an incremental reduction of
the effective noise in an image (i.e. reducing noise-level σ > 0
step-by-step). Originally, DMs were proposed to generate new
samples from pdata [1], but they were quickly adopted for the
solution of inverse problems.

Inspired by PnP approaches, algorithms like DiffPIR [2]
condition the sampling process on the observation y, gener-
ating samples from p(· | y) by using the score network as
a deep generative prior. Since perceptual quality is central to
inverse problems, performance is often measured via Learned
Perceptual Image Patch Similarity (LPIPS) [11], which better
aligns with human-perceived image quality than traditional
pixel-wise metrics. Using LPIPS as the evaluation metric, Diff-
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PIR achieves state-of-the-art perceptual quality, outperforming
a PnP half-quadratic-splitting algorithm [2].

Despite the impressive performance of DMs and their
similarities to PnP methods, they have not yet been DEQ fine-
tuned for inverse problems. While prior work [12] has used
DEQ models for parallel sampling with root solvers and model
inversion, DEQ fine-tuning of DMs on inverse problems is
novel. To address this, we propose MaximUm a PostEriori
Training (MUPET)1:

• Refines the score network using the fixed-point of MAP
estimation, bridging the gap between generative modeling
and MAP estimation.

• Reduces LPIPS by up to 27% in restoration tasks while
maintaining performance when sampling from the prior.

• Maintains inference time by serving as a drop-in replace-
ment for the pre-trained model.

II. THEORY AND RELATED WORKS

To contextualize MUPET, we first review the theoretical
foundations of DEQ models and DMs in the context of inverse
problems. We discuss how DEQ principles enable fine-tuning
of iterative solvers and motivate our choice of the variance
exploding parametrization for MUPET.

A. Deep Equilibrium Models

Deep Equilibrium (DEQ) models [4], [5] enable the fine-
tuning of an iterative procedure at its fixed-point (FP), avoiding
the need for explicit backpropagation through iterations. DEQ
models have been used to fine-tune PnP methods, improving
both single-task [6] and multi-task [7], [8] reconstruction
performance. To formalize this, we look at the PnP GD in (3),
with (assuming convergence) FP xg , such that gθ(xg) = xg .
The gradient of a given loss function l can then be expressed
as

δl(x̂,xg)

δθ
=

δl(x̂,x′)

δx′

∣∣∣
x′=xg

J−1 δgθ(x
′)

δθ

∣∣∣
x′=xg

, (4)

where J := I − δgθ(x
′)

δx′ |x′=xg
is the Jacobian [4]. Note

that the above expression is independent of the path taken.
Furthermore, once the FP is obtained, approximating J as the
identity further simplifies backpropagation while still yielding
a direction of descent [5].

MUPET leverages this Jacobian-free backpropagation to
fine-tune score networks across multiple inverse problems
within a PnP GD framework. Since both PnP methods and
DMs estimate the score function of an image distribution,
MUPET uses DEQ models to fine-tune the score function in
a PnP GD algorithm.

B. Diffusion Models for Inverse Problems

After looking at how DEQ models enable the fine-tuning
of PnP methods, we now examine diffusion models (DMs):
a framework that addresses inverse problems via generative
sampling rather than MAP estimation. DMs aim at reversing a

1Our code is available at https://github.com/Realistic3D-MIUN/MUPET

process that progressively corrupts clean images with Gaussian
noise. For the reversal, a score network sθ : Rd×R>0 → Rd,
maps a noisy image and the corresponding noise-level σ >
0 to an estimate of the added noise [1]. Training leverages
Denoising Score Matching (DSM), minimizing

LDSM
σ := ∥σsθ(z, σ) + ε∥22, (5)

with z := x̂ + σε, leading to sθ(·, σ) ≈ ∇ log pσ(·). Here,
pσ(x

′) :=
∫
gσ(x

′−x)pdata(x) dx is the convolution of pdata
with a Gaussian kernel gσ with standard deviation σ > 0 [1].

Diffusion-based approaches are mainly presented via the
variance preserving (VP) and the variance exploding (VE)
frameworks. While they are mathematically equivalent and can
be transposed to one-another [3], the parametrization can affect
training and inference. In the variance preserving (VP) formu-
lation [1], [13], noise is added while simultaneously scaling
the image to keep variance constant. The trained network
does not directly represent the score ∇ log pdata but instead
learns a rescaled version. By contrast, the VE formulation
adds increasing amounts of Gaussian noise without scaling the
signal. The VE framework utilizes the DSM introduced in (5)
and directly estimates the score function, eliminating the need
for rescaling or re-weighting during inference. Because the
score network directly estimates∇ log pdata, the VE framework
presents a natural choice for the use in combination with the
PnP GD used in MUPET.

Adaptations of diffusion-based approaches to inverse prob-
lems often draw inspiration from PnP methods. For example,
DiffPIR [2] modifies the PnP half-quadratic-splitting algorithm
for posterior sampling, achieving high reconstruction quality.
While previous work has used DEQ models for inference
improvements, such as parallel sampling and model inver-
sion [12], MUPET leverages DEQ models to fine-tune the
score network during training. MUPET refines the network
using actual reconstruction errors rather than only relying on
Gaussian-perturbed images, bridging the gap between gen-
erative modeling and MAP estimation without changing the
inference procedure.

III. MAXIMUM A POSTERIORI TRAINING OF DIFFUSION
MODELS

This work investigates parallels between DMs and MAP
estimation, motivating the use of a score network in a PnP
GD algorithm. We introduce MUPET, which fine-tunes a DM
via the fixed-point of PnP GD.

Optimizing LDSM
σ in (5) for any fixed σ is equivalent to

optimizing the denoising loss

Lden
σ := ∥z + σ2sθ(z, σ)− x̂∥22, (6)

for z := x̂ + σε. Because this loss uses the sum of squared
errors, the loss ensures z + σ2sθ(z, σ) ≈ E(x | z). Also, by
Tweedie’s formula [14],

E(x | z) = z + σ2∇ log pσ(z), (7)

we can now write (as is done in [1])

sθ(z, σ) ≈ ∇ log pσ(z). (8)

1883



This makes the score network a good candidate for the
regularizer in (3), as ∇ log pσ → ∇ log pdata for σ → 0. Thus,
we propose setting Gθ := −sθ(·, σn) and using the resulting
MAP estimate xg via the loss

LMUPET :=
α

σ2
n

∥xg − x̂∥22 + LDSM
σn

(9)

to fine-tune sθ. α > 0 is a weighting parameter, but for this
work we limit investigations to α = 1 as both terms in (9) use
the same underlying loss and concern problems with the same
noise-level. We call the first term LDEQ. It is scaled using σn to
keep it in line with LDSM

σn
and to ensure that larger noise-levels

are not overly favored. LDEQ allows training on the actual
reconstruction error using the FP estimate xg (found using
Adam [15], following [8], [9]). To optimize sθ, we employ
Jacobian-free backpropagation. The resulting contribution of
LDEQ to the direction of descent is

p := −2αη(xg − x̂)T
δsθ(x

′, σn)

δθ

∣∣∣
x′=xg

. (10)

We picked the squared 2-norm for LDEQ to keep it in line
with LDSM, as the loss function that aligns best with MAP
estimation in the sense of Bayes-optimality is the 0-1 loss and
is ineffective for gradient-based training. The training pipeline
can be seen in Algorithm 1.

Data: Training data D ⊂ Rd, noise-levels Σ ⊂ R>0

and set of degradations A;
Result: Fine-tuned sθ ;
for a number of epochs do

for all x̂ from D do
(σn,A)← randomly picked from Σ×A;
ε1, ε2 ∼ N (0, I);
y ← Ax̂+ σnε1;
Find FP xg of GD procedure gθ ;
LDEQ ← 1

σ2
n
∥xg − x̂∥22;

LDSM ← ∥σn · sθ(x̂+ σnε2, σn) + ε2∥22;
L← LDEQ + LDSM ;
Update parameters θ via loss L ;

end
end

Algorithm 1: Training pipeline for MaximUm a PostEriori
Training (MUPET).

By training sθ on a range of different noise-levels and
degradations, MUPET steers sθ to be a general score network
that is not tied to any single task. At the same time, it is
updated on the actual reconstruction, meaning it is trained
on more meaningful inputs than only images perturbed by
Gaussian noise.

IV. EXPERIMENTS

In this section, we evaluate MUPET by comparing it to the
DSM-trained score function from [1]. We conduct experiments
on CIFAR-10 [16] and LSUN Bedroom [17], assessing per-
formance across several inverse problems. Here, we detail the
training setup, inference procedure, and evaluation metrics.

A. Training

The DSM baseline is a noise-conditional score network
(NCSN++) taken from [1]. MUPET uses the same architecture,
initialized with the pre-trained DSM score function. The FPs
of the PnP GD gθ (in image-space) were computed using
the Adam optimizer [15], following [8] (default parameters,
learning rate set to η = 0.05). Finding a more accurate
FP takes longer but provides a more accurate gradient for
backpropagation. For this work, iterations were terminated
when the mean squared distance between two iterates fell
below 5 ·10−5, at the latest after 500 iterations. The latter only
came into play in less than 10% of training iterations, meaning
convergence was reached consistently. Each iteration started
from an x0, where pixel values were randomly drawn from
a Gaussian distribution with mean 0.5 and standard deviation
1. For both datasets, the pre-processing was taken from [1].
The loaded images were normalized to lie in [0, 1], but outputs
were left as is and not clipped.

Training Setup:
• Epochs: 100
• Optimizer for network parameters θ: Adam [15]

(default parameters, learning rate 10−5)
• CIFAR-10 [16]: 50K images, in batches of 128 images
• LSUN Bedroom [17]: 500 iterations of 8-image batches

per epoch
• Hardware: A single Nvidia A40 GPU
• Runtime: ∼1.3–1.35h/epoch
At each training iteration, there was an equal chance of

picking an inverse problem from:
• Super-resolution: The scale factor was uniformly chosen

from {1, 2, 3, 4, 5, 6, 7, 8}.
• Deblurring: The standard deviation for the Gaussian blur

kernel was uniformly sampled from [0, 8].
• Pixel-wise completion: A masking factor was drawn

from [0, 1], determining the probability of each pixel
being masked.

• Block-wise completion: The block’s width and height
were independently sampled from [0, 32], with a ran-
domly placed mask.

• Denoising: No additional degradation was applied.
Also, at each iteration, we chose a different σn, by first

choosing an r uniformly from [0, 1], leading to

σn = (σmax − σmin + 1)r − 1 + σmin. (11)

The sampling strategy as well as σmin = 0.01, σCIFAR
max = 50

and σLSUN
max = 378 (for CIFAR-10 and LSUN Bedroom,

respectively) were taken from [1]. To maintain comparability,
we did not deviate from this selection process.

B. Inference

After training, we assessed the models on posterior sampling
and prior generation, using an exponential moving average
of the model’s parameters, following [1]. The experiments
compare a score function obtained via MUPET with the
baseline DSM, which is the pre-trained NCSN++ from [1].
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We evaluated MUPET’s ability to recover images from
degraded observations using a VE version of DiffPIR (see
Table II and Fig. 1 for results). To isolate the differences
between MUPET and the pre-trained DSM from [1], we
plug them into DiffPIR, a well-established diffusion-based
reconstruction method with strong performance across various
tasks. DiffPIR reports excellent perceptual quality, heavily
outperforming PnP in LPIPS [2]. The use of the same DiffPIR
procedure and identical network structure allows for a direct
evaluation of how MUPET affects diffusion priors for pos-
terior sampling. DiffPIR’s strong perceptual performance and
principled approach make it a natural choice for evaluating the
effects of MUPET.

The sampling process on CIFAR-10 involved 50,000 images
on a single Nvidia A40 GPU (30 hours runtime). The inverse
problems all considered σn = 0.01 and included:

• Pixel-wise Completion (pix): 80% or 90% missing
pixels

• Block-wise completion (block): 24 × 24 and 64 × 64
masked regions

• Super-resolution (SR): scaling factors: 2, 3, and 4
• Deblurring (deblur): Gaussian blur with σblur = 2

The tests for image restoration were performed on the
LSUN Bedroom test-set (300 images). The DiffPIR hyper-
parameters (ζ, σT ) for DSM and MUPET were selected via
grid search selecting the values that lead to the best LPIPS,
respectively. We chose regularization weight λ = 1 for
its alignment with the original inverse problem formulation.
The exact hyper-parameters and code can be found in the
repository.

For the evaluation of reconstruction quality, we used Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity
Index Measure (SSIM) [18] for pixel-based accuracy and
structural similarity. For perceptual quality, we used LPIPS
[11]: A deep-learning-based metric that aligns with human
perception and is thus often preferred over pixel-based metrics.

We evaluated prior sampling using the predictor-corrector
framework for the VE framework from [1]. We generated
50,000 images from CIFAR-10’s prior distribution and com-
pared their Fréchet Inception Distance (FID) [19] with
respect to both the CIFAR-10 training set (50,000 images) and
test set (10,000 images). FID estimates distributional similarity
between two datasets and was calculated using [20].

V. RESULTS AND DISCUSSION

A. Performance Evaluation

We evaluated MUPET by comparing its score functions to
those trained with standard DSM [1] on both prior sampling
and various inverse problems. DiffPIR was used as a controlled
framework to assess the two score-functions in Table II,
permitting a direct evaluation of MUPET’s effect.

Table I shows a slight improvement in FID when sampling
from the prior and highlights that the addition of LDEQ

represents a refinement of the score network rather than a
conflicting training objective.

TABLE I
SAMPLING ON CIFAR-10; EVALUATED USING FID↓.

Network Training Set Test Set
DSM 2.49 4.54
MUPET 2.45 4.50

TABLE II
EVALUATION OF DSM AND MUPET USING DIFFPIR: PROBLEMS
CONSIDERED ARE COMPLETION (PIXEL-WISE AND BLOCK-WISE),

GAUSSIAN DEBLURRING, AND SUPER-RESOLUTION WITH σn = 0.01.

Task Network PSNR↑ SSIM↑ LPIPS↓

2xSR DSM 28.53 0.862 0.152
MUPET 29.34 0.871 0.111

3xSR DSM 26.21 0.791 0.280
MUPET 26.75 0.792 0.220

4xSR DSM 24.54 0.712 0.390
MUPET 24.99 0.721 0.312

80% pix DSM 27.73 0.855 0.088
MUPET 27.54 0.851 0.085

90% pix DSM 25.19 0.782 0.167
MUPET 25.08 0.779 0.159

24 block DSM 40.74 0.985 0.005
MUPET 40.97 0.987 0.005

64 block DSM 29.68 0.957 0.031
MUPET 29.67 0.959 0.031

deblur DSM 26.92 0.790 0.257
MUPET 27.05 0.802 0.201

Table II demonstrates MUPET’s superior perceptual quality
in posterior sampling compared to DSM, particularly for
super-resolution tasks, where reconstructions can be sharper
with fewer artifacts (see Fig. 1). While there are small drops
in PSNR by up to 0.23 dB for completion, there is no increase
in LPIPS. Specifically, LPIPS improves notably by 20%–27%
in super-resolution and deblurring tasks. The absence of LPIPS
improvements in block-wise completion aligns with expecta-
tions, as this scenario closely resembles prior sampling and
thus can be solved well by a network trained on Gaussian-
noise perturbations, only.

Fig. 1 highlights that MUPET, while sometimes leading
to smoother surfaces, reduces blur and artifacts compared to
DSM. The improvement can be ascribed to MUPET having
been DEQ-trained in a MAP GD algorithm rather than on
images only perturbed by Gaussian noise, exposing it to
different influences of the data-fidelity term for different degra-
dations. As a result, MUPET improves posterior sampling
while maintaining prior sampling quality, demonstrating the
effectiveness of fine-tuning diffusion models within a MAP
framework.

B. Limitations and Future Work

While this work is theoretical, we acknowledge that gener-
ative models may be misused or produce fabricated content.
To mitigate such risks, we focus on datasets not centered
around human faces. However, as generative models continue
to advance, ethical concerns regarding their deployment such
as data bias and malicious use should be considered. Ensuring
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Fig. 1. DiffPIR: 4× super-resolution on LSUN Bedroom

that models like MUPET are used for responsible applications
remains an important challenge for the field.

Although DEQ models offer advantages for fine-tuning, they
introduce additional computational overhead in training. In our
experiments, over 90% of iterations converged before reaching
the maximum 500 iterations, suggesting reliable convergence
in most cases. Nonetheless, future work could explore adaptive
stopping criteria or more advanced root solvers to further
reduce training-time.

For this work, we set α = 1 in (9) to avoid extensive hyper-
parameter tuning, but exploring other choices may improve
performance. Beyond weighting, the choice of loss function
for LDEQ is another avenue for future improvements, as the
current loss function is not Bayes-optimal. Since the Bayes-
optimal choice is not feasible, investigating alternative loss
functions may lead to significant improvements for MAP
estimation as a whole and, as a consequence, MUPET.

Future research could extend MUPET to applications like
medical imaging (e.g., MRI or CT reconstruction), potentially
leading to tangible benefits for society. Additionally, exploring
its impact on other inverse problems, such as hyperspectral
imaging or remote sensing, may open new avenues for prac-
tical deployment.

VI. CONCLUSION

This work introduced MUPET, a framework that bridges the
gap between MAP estimation and generative modeling by fine-
tuning diffusion models directly on inverse problems, beyond
traditional training restricted to Gaussian-noise perturbations.
By directly refining the score network on actual inverse
problems, MUPET improves perceptual reconstruction quality

(particularly for super-resolution) without compromising gen-
erative capability or increasing inference cost. Thus, MUPET
is a principled and practical enhancement of existing diffusion-
based methods for image restoration.
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