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Abstract—While foundation models demonstrate impressive
performance across various tasks, they remain vulnerable to
adversarial inputs. Current research explores various approaches
to enhance model robustness, with Diffusion Denoised Smoothing
emerging as a particularly promising technique. This method
employs a pretrained diffusion model to preprocess inputs before
model inference. Yet, its effectiveness remains largely unexplored
beyond classification. We aim to address this gap by analyzing
three datasets with four distinct downstream tasks under three
different adversarial attack algorithms. Our findings reveal that
while foundation models maintain resilience against conven-
tional transformations, applying high-noise diffusion denoising
to clean images without any distortions significantly degrades
performance by as high as 57%. Low-noise diffusion settings
preserve performance but fail to provide adequate protection
across all attack types. Moreover, we introduce a novel attack
strategy specifically targeting the diffusion process itself, capable
of circumventing defenses in the low-noise regime. Our results
suggest that the trade-off between adversarial robustness and
performance remains a challenge to be addressed.

Index Terms—Adversarial attack, adversarial robustness, de-
noising diffusion models, foundation models, downstream tasks.

I. INTRODUCTION

Vision Foundation Models (VFMs) have transformed com-
puter vision across diverse tasks. Despite their impressive
capabilities, these models remain highly vulnerable to adver-
sarial perturbations, i.e., imperceptible modifications that can
catastrophically degrade the performance of downstream tasks.

Recent approaches like ”(Certified!!) Adversarial Robust-
ness for Free!” [1] propose using pre-trained diffusion models
to denoise inputs before inference. However, existing research
primarily focuses on classification tasks with traditional neural
networks rather than examining foundation models across
multiple applications.

We present the first comprehensive evaluation of diffusion-
based defenses for VFMs across multiple downstream tasks.
Our analysis reveals: (i) A stark contrast between VFMs’
resilience to common image distortions versus their extreme
vulnerability to adversarial attacks. (ii) A critical trade-off:
high-noise diffusion offers substantial protection but degrades
clean performance by 14-33% for classification, segmentation
and retrieval tasks, and up to 57% for depth estimation,
while low-noise diffusion preserves performance but remains
vulnerable to sophisticated attacks.

These findings highlight the persistent challenge of balanc-
ing strong adversarial robustness with high task performance
in security-critical applications of foundation models.

clean classified:
boat

denoised classified:
aeroplane

clean classified:
cat

denoised classified:
train

Fig. 1. Clean images before and after diffusion denoising with their cor-
responding predictions. Note that denoised images are distorted, and their
classification labels and segmentation maps are incorrect.

II. BACKGROUND

A. Vision Foundation Models

VFMs are large-scale pre-trained neural networks capable of
capturing rich, transferable visual features that can be adapted
to numerous downstream tasks. However, this property in-
troduces potential vulnerabilities, as adversarial perturbations
targeting the VFM can propagate to multiple downstream tasks
simultaneously, amplifying their harmful impact.

B. Adversarial Attacks and Robustness

Adversarial attacks are imperceptible perturbations to input
data that cause machine learning models to make incorrect
predictions [2], [3]. Common attack methods include Projected
Gradient Descent (PGD) [4]; Momentum Iterative Fast Gradi-
ent Sign Method (MI-FGSM) [5]; and Scale-Invariant Attack
(SIA) [6].

Defense strategies include adversarial training [4] and input
transformations [7], with each approach balancing robustness
against clean accuracy.

C. Randomized Smoothing and Denoised Smoothing

Randomized smoothing is a technique that transforms a base
classifier into a more robust version by taking a majority
vote over multiple Gaussian-noised copies of an input. [8]
demonstrated that by adding Gaussian noise to an input and
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averaging classifier predictions, one can derive a certified
robustness radius under the ℓ2-norm.

Denoised smoothing extends this concept by introducing
an explicit denoising step before classification. [9] proposed
a two-step approach where an input is first corrupted with
Gaussian noise, then denoised using a learned model before
being classified. This enables certified robustness without
retraining the classifier itself.

D. Certified Adversarial Robustness Using Diffusion Models
The Diffusion Denoising Smoothing [1] leverages off-the-

shelf denoising diffusion probabilistic models [10] as denois-
ers within a certified smoothing pipeline. The methodology
involves: (1) Applying Gaussian noise δt with the variance
σ2
t = 1−αt

αt
to an input xo, where αt is a constant derived

from the timestamp t that determines the amount of noise to
be added to the image, resulting in xt =

√
αt(xo+δt), δt ∼

N
(
0, σ2

t I
)
. (2) Using a pretrained diffusion model dγ to

denoise the perturbed input x̂ = dγ (xt; t). (3) Classifying
the denoised image using the output of the off-the-shelf VFM
z = fϕ(x̂) and a downstream head c = gθ(z), where c
represents a downstream task label.

In the original work [1], the authors only considered the
classification task. Our work extends this evaluation by analyz-
ing the impact of different noise levels, adversarial attacks, and
downstream tasks, providing a broader perspective on certified
protection mechanisms.

III. METHODOLOGY

A. Adversarial Attacks
Let us consider a model composed of a VFM fϕ with a

downstream task head gθ. For a given input xo, the system
produces the output co = gθ(fϕ(xo)).

To attack the above system, the attacker defines two losses:
Lx (x;xo) measuring the perceptual distance between an
input x and xo, and Lc(c; co) gauging how the task per-
formance on x differs from the result co. For instance, for
the classification task, the result co is a predicted class and
Lc(c; co) = p(co|x) − maxc̸=co p(c|x). Under a distortion
budget constraint, the attack looks for the minimizer xa of
Lc(c; co) over {x : Lx (x;xo) ≤ ϵ}, with c = gθ(fϕ(x)).

B. Adversarial attacks under denoising diffusion
We outline a proposed general algorithm in Algorithm 1.

PGD [4], MI-FGSM [5], and SIA [6] can all be represented
as a particular case. Since PGD does not use momentum,
it is equivalent to setting decay factor µ to 0 for gradient
accumulation. For MI-FGSM and SIA, decay factor µ is 1.
PGD and MI-FGSM do not apply any transformation to the
input, so the transformation function T is the identity function.
For SIA, T is a random transform out of resize, vertical or
horizontal shift or flip, rotation by 180 degrees, scaling, adding
Gaussian noise, or dropout with probability 0.1.

When pdiffusion = 0, no denoising occurs and the original
attack is used. When pdiffusion = 1, the attack uses the denoised
image at every step via a single-step diffusion model using
random timestep between tmin and tmax.

Algorithm 1: Adversarial Attack with Certified Aug-
mentations
Input: xo: input image, co: label; fϕ: foundation

model, gθ: downstream head;
ϵ∞: budget, ν: step size, T : iterations, µ: decay, T :
transform;
dγ : diffusion denoiser, tmin, tmax: denoising range,
pdiffusion: denoise probability
Output: xa: adversarial image

1 a← 0 ; // Init perturbation

2 g← 0 ; // Init momentum

3 for t = 1 to T do
4 xa ← xo + a ; // Perturbed image

5 if rand() < pdiffusion then
6 t← randint(tmin, tmax) ; // Sample timestep

7 xt ←
√
αt(xa + δt) ; // Noisy sample

8 x̂← dγ(xt, t) ; // Denoise

9 else
10 x̂← xa ; // No denoising

11 end
12 c← gθ(fϕ(T (x̂))) ; // Predict

13 L ← Lc(c; co) ; // Loss

14 ∇aL ← Gradient(L,a) ; // Grad

15 g← µ · g + ∇aL
∥∇aL∥1

; // Update momentum

16 a← a+ ν · sign(g) ; // Update perturbation

17 a← Clip(a,−ϵ∞, ϵ∞) ; // Budget clip

18 a← Clip(a,−xo, 1− xo) ; // Valid range

19 end
20 xa ← xo + a
21 return xa

IV. RESULTS AND DISCUSSION

A. Experimental Setup

Foundation Model. For our study, we use the DINOv2 [11]
foundation model in three sizes: ViT-S, ViT-B and ViT-L [12].
We train a downstream head gθ for each task using a train split
and report performance on a validation or test part.

Diffusion denoising. We employ an off-the-shelf uncondi-
tional denoising diffusion model [13], which was trained on
the ImageNet dataset [14]. To address resolution compatibility
requirements, we resize the smallest dimension of each image
to 224 and then perform a central crop of 224× 224.

Datasets and Metrics. (i) PascalVOC [15]: Accuracy for
classification and Mean Intersection over Union (mIoU) for
segmentation. (ii) NYU-Depth [16]: RMSE for depth esti-
mation. (iii) Revisited Oxford buildings dataset [17]: Mean
Average Precision (mAP) for image retrieval of easy queries.
Additionally, we quantify the feature-space impact of ad-
versarial perturbations by measuring the cosine similarity
between the class tokens extracted from the last layer of
the foundation model for original and adversarial images
cos sim(fϕ(xo), fϕ(xa)) and referred to as CLS cos sim.
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Adversarial Attacks. We apply three attack methods –
PGD [4], MI-FGSM [5], and SIA [6] – using consistent
hyperparameters in Algorithm 1. The perturbation budget ϵ∞
is set to 3

255 , with a Peak Signal-to-Noise Ratio PSNR around
40 dB. We set the number of iterations T to 50 and the step
size ν to ϵ∞

T ∗ 4. For every downstream task we set Lc(c; co)
to corresponding loss: cross-entropy for classification and
segmentation, RMSE for depth estimation, and CLS cos sim
for image retrieval. The denoising probability pdiffusion during
attacks is set to either 0, 0.5, or 1. When it is equal to zero
it corresponds to the original attack method without using
diffusion model at all. For the diffusion timestep parameter,
we explore three distinct scenarios: (i) tmin = tmax = 10 –
corresponding to a low noise level; (ii) tmin = tmax = 396 –
corresponding to a high noise level; (iii) tmin = 10, tmax =
396 – corresponding to a varying noise level.

To facilitate future research, the codebase is made available
at https://github.com/bruce-willis/attacking-downstream.

B. Robustness to Distortions and Impact of Model Size
Table I presents a comprehensive evaluation of DINOv2’s

performance across various backbone sizes, distortions, and
adversarial scenarios. The results reveal several important
patterns.

First, we observe a striking contrast between the model’s
resilience to common image distortions and its vulnerability
to adversarial attacks. Focusing on the ViT-S variant, the foun-
dation model exhibits remarkable robustness against practical
transformations like horizontal flipping, Wiener filtering, blur,
JPEG compression, and grayscale conversion. However, even a
vanilla PGD adversarial attack devastates model performance
across all metrics. This performance collapse underscores
the critical vulnerability of foundation models to adversarial
perturbations, even when these perturbations remain impercep-
tible to humans

Regarding diffusion denoising, consistent patterns emerge
across all model variants. Low-noise denoising preserves or
slightly improves performance compared to unmodified inputs.

However, high-noise diffusion significantly degrades perfor-
mance across all tasks and model sizes. Interestingly, while
larger models (ViT-B and ViT-L) demonstrate better baseline
performance on clean images compared to ViT-S, the relative
impact of diffusion denoising remains consistent across model
scales. This suggests that the fundamental trade-off between
noise intensity for potential adversarial robustness and main-
taining task performance applies regardless of model capacity.

Figure 1 shows how diffusion denoising affects classi-
fication and segmentation. Denoising introduces distortion
that causes misclassifications. The segmentation maps clearly
reveal the impact: for the boat image, the segmentation map
becomes empty as the main object is removed, while for the cat
image, the segmentation becomes excessively noisy, resulting
in incorrect predictions.

C. Diffusion During Attack and Defense
Table II presents a comprehensive evaluation of the inter-

action between diffusion-based attacks and defenses. In this

table, the first three columns specify the attack configuration
(optimization method, diffusion timestep, and diffusion prob-
ability during attack), while the fourth column indicates the
defense strategy. The remaining columns show performance
metrics for PascalVOC, NYU Depth and rOxford datasets.

High Noise Diffusion Defense as a defense strategy demon-
strates remarkable effectiveness against all attack configura-
tions, regardless of the attack method or diffusion settings
during the attack. This consistent performance suggests that
high noise diffusion successfully disrupts adversarial pertur-
bations by substantially altering the input signal, effectively
”resetting” the image features. It is important to note that this
defense comes with a significant drawback: using high noise
diffusion invariably results in a loss of approximately 20% of
the original model performance across all tasks, regardless of
whether the input is clean or adversarial.

Low Noise Diffusion Defense shows varying effectiveness
depending on the attack configuration. When attackers incor-
porate diffusion during the attack process, particularly with
low timesteps, the defense becomes significantly less effective.
This suggests attackers can adapt to low noise defenses by
incorporating similar noise levels during the attack process.

Diffusion During Attack. The impact of incorporating dif-
fusion during the attack process reveals interesting patterns.
When attackers use high noise diffusion with pdiffusion = 1.0,
attacks become ineffective regardless of defense strategy,
with performance metrics comparable to clean images. This
counterintuitive result suggests that high noise diffusion during
attack effectively destroys the adversarial perturbation itself.
Conversely, using low noise diffusion or variable noise levels
([low, high]) during attack with pdiffusion = 1.0 creates more
transferable adversarial examples that maintain some effective-
ness even against low noise defenses.

Attack Method Comparison. Among the three attack meth-
ods, SIA consistently demonstrates greater resistance to
diffusion-based defenses, particularly with low noise defense.
For instance, with low noise defense and no diffusion during
attack, SIA maintains lower classification accuracy (2.2%)
compared to PGD (46.3%), indicating SIA generates more
robust adversarial perturbations. This advantage diminishes
with high noise defense, where all attack methods become
comparably ineffective.

These results highlight a complex interplay between attack
and defense strategies in the diffusion space. High noise
diffusion provides strong defense but at the cost of significant
performance degradation on clean inputs (as seen in Table I).
Meanwhile, low noise diffusion preserves clean performance
but remains vulnerable to sophisticated attacks that incorporate
diffusion during the attack process. This creates a challenging
trade-off between robustness and performance that requires
careful consideration based on application-specific require-
ments.
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TABLE I
DOWNSTREAM PERFORMANCE FOR DINOV2 UNDER VARIOUS DISTORTIONS (robustness), DIFFUSION DENOISING, AND ADVERSARIAL ATTACK (security).

Backbone Transform PascalVOC NYU Depth rOxford

Classification↑ Segmentation↑ CLS cos sim↑ Depth↓ CLS cos sim↑ mAP↑ CLS cos sim↑

ViT-S

clean performance 94.89 79.26 1.00 0.55 1.00 84.46 1.00

hflip 94.76 79.07 0.93 0.56 0.90 85.49 0.97
wiener size = 13 92.92 71.68 0.85 0.67 0.76 82.24 0.84

blur kernel size = 13 94.50 76.14 0.88 0.65 0.91 84.91 0.88
jpeg quality = 85 94.63 78.56 0.98 0.57 0.98 84.62 0.98

grayscale 94.36 78.71 0.94 0.59 0.96 83.84 0.96
rotation 82.57 59.49 0.57 1.16 0.44 28.55 0.40

low noise diffusion 95.54 79.03 0.99 0.58 0.99 83.82 0.99
high noise diffusion 80.60 61.30 0.60 0.79 0.58 62.03 0.61

PGD Adversarial Attack 0.0 10.5 0.2 6.41 0.14 0.46 -0.62

ViT-B
clean performance 96.99 81.02 1.00 0.47 1.00 88.17 1.00
low noise diffusion 96.59 81.15 0.99 0.47 0.99 88.13 0.99
high noise diffusion 82.44 66.35 0.55 0.71 0.53 66.82 0.53

ViT-L
clean performance 97.51 76.94 1.00 0.42 1.00 88.91 1.00
low noise diffusion 98.03 77.04 0.99 0.42 0.99 88.61 0.99
high noise diffusion 83.49 63.24 0.53 0.66 0.5 66.5 0.52

V. CONCLUSION

This paper presents a comprehensive analysis of diffusion-
based adversarial defenses for VFMs across multiple down-
stream tasks. Our experiments reveal key insights about
robustness-performance trade-offs in DINOv2 models.

We observed a stark contrast between foundation models’
resilience to common image distortions and their extreme
vulnerability to adversarial attacks, with performance drop-
ping from over 90% to near-zero across multiple tasks. We
identified that high-noise diffusion provides substantial pro-
tection against the tested attack methods but degrades clean
performance by 14-33% for classification, segmentation and
retrieval tasks, and up to 57% for depth estimation, while low-
noise diffusion preserves performance but offers inadequate
protection against sophisticated attacks.

Overall, while diffusion-based defenses offer promising
protection for foundation models, the fundamental trade-off
between robustness and performance remains unresolved, pre-
senting a significant challenge for deploying these models in
security-critical contexts.
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TABLE II
IMPACT OF DIFFUSION DENOISING ON DINOV2 VIT-S MODEL ON PASCALVOC VALIDATION SET, NYU DEPTH TEST SET AND ROXFORD DATASET

AFTER DIFFERENT ADVERSARIAL ATTACKS. THE ARROW INDICATES THE BEST PERFORMANCE FOR THE DEFENDER.

Attack Defense PascalVOC NYU Depth rOxford
Optim Diff. t Diff. prob Denoising Classif.↑ Segment.↑ CLS cos sim↑ Depth↓ CLS cos sim↑ mAP↑ CLS cos sim↑

None
None 94.89 79.26 1.00 0.55 1.00 84.46 1.00

low noise 95.54 79.03 0.99 0.58 0.99 83.82 0.99
high noise 80.60 61.30 0.60 0.79 0.60 62.03 0.61

pgd

None 0.0

None

0.0 10.5 0.2 6.4 0.1 0.46 -0.62
low 0.5 0.0 10.3 0.2 6.4 0.1 0.46 -0.52
low 1.0 0.0 11.7 0.2 6.2 0.2 0.47 -0.28
high 0.5 0.0 10.9 0.3 6.4 0.2 0.46 -0.52
high 1.0 93.3 76.9 1.0 0.6 1.0 84.84 0.99

[low, high] 0.5 0.0 11.0 0.3 6.4 0.2 0.46 -0.53
[low, high] 1.0 30.3 45.2 0.85 2.1 0.8 73.99 0.78

mifgsm

None 0.0 0.0 13.5 0.25 6.3 0.2 0.47 -0.39
low 0.5 0.0 15.7 0.3 5.9 0.3 0.56 -0.18
low 1.0 0.0 20.4 0.4 5.1 0.4 8.81 0.08
high 0.5 0.0 16.6 0.4 5.8 0.3 0.69 -0.16
high 1.0 92.9 77.0 1.0 0.6 1.0 85.13 0.99

[low, high] 0.5 0.0 16.3 0.4 5.8 0.3 0.64 -0.19
[low, high] 1.0 37.6 49.9 0.85 1.8 0.9 80.47 0.83

sia

None 0.0 0.4 21.3 0.25 4.1 0.2 0.63 -0.11
low 0.5 1.2 23.6 0.35 4.1 0.3 1.55 -0.02
low 1.0 3.5 27.3 0.45 3.8 0.4 18.40 0.18
high 0.5 3.3 27.5 0.4 3.8 0.3 3.95 0.02
high 1.0 93.1 77.7 1.0 0.6 1.0 84.83 0.99

[low, high] 0.5 2.6 26.0 0.35 3.8 0.3 4.50 0.03
[low, high] 1.0 65.0 58.9 0.9 1.4 0.9 81.06 0.89

pgd

None 0.0

low noise

46.3 54.6 0.9 1.4 0.9 81.66 0.88
low 0.5 0.0 13.9 0.45 5.5 0.4 5.71 0.01
low 1.0 0.0 12.4 0.35 6.1 0.3 0.53 -0.19
high 0.5 52.3 56.5 0.9 1.2 0.9 81.79 0.88
high 1.0 93.1 76.6 1.0 0.6 1.0 84.35 0.98

[low, high] 0.5 28.6 45.8 0.85 1.9 0.9 71.64 0.78
[low, high] 1.0 34.2 45.9 0.85 2.1 0.8 74.51 0.77

mifgsm

None 0.0 9.2 34.6 0.8 2.5 0.8 50.07 0.55
low 0.5 0.0 20.9 0.55 4.9 0.5 11.04 0.17
low 1.0 0.1 21.9 0.5 4.9 0.5 18.99 0.17
high 0.5 12.8 37.3 0.85 2.5 0.8 62.26 0.64
high 1.0 93.6 76.5 1.0 0.7 1.0 84.92 0.98

[low, high] 0.5 6.8 34.0 0.75 3.0 0.8 50.61 0.47
[low, high] 1.0 40.2 50.0 0.85 1.8 0.9 80.01 0.82

sia

None 0.0 2.2 26.0 0.5 3.7 0.4 15.42 0.15
low 0.5 3.7 27.0 0.45 3.7 0.4 18.43 0.17
low 1.0 6.2 28.5 0.45 3.7 0.4 24.98 0.25
high 0.5 12.7 34.1 0.65 3.1 0.5 36.79 0.35
high 1.0 93.6 77.5 1.0 0.6 1.0 84.72 0.98

[low, high] 0.5 9.6 32.1 0.6 3.2 0.5 35.14 0.32
[low, high] 1.0 65.5 59.1 0.9 1.3 0.9 80.92 0.87

pgd

None 0.0

high noise

79.4 61.5 0.6 0.8 0.6 64.55 0.60
low 0.5 79.8 61.5 0.6 0.8 0.6 62.70 0.60
low 1.0 79.8 61.0 0.6 0.8 0.6 59.80 0.61
high 0.5 75.2 56.3 0.6 0.9 0.6 61.78 0.56
high 1.0 64.5 52.4 0.6 1.1 0.5 54.58 0.52

[low, high] 0.5 77.2 59.4 0.6 0.8 0.6 62.06 0.58
[low, high] 1.0 73.1 57.7 0.6 0.9 0.6 56.71 0.56

mifgsm

None 0.0 79.0 61.3 0.6 0.8 0.6 66.18 0.59
low 0.5 77.6 61.0 0.6 0.8 0.6 61.56 0.59
low 1.0 79.8 61.1 0.6 0.8 0.6 66.63 0.62
high 0.5 73.0 57.1 0.6 0.9 0.6 60.44 0.56
high 1.0 67.0 53.6 0.6 1.0 0.5 60.42 0.52

[low, high] 0.5 78.0 59.0 0.6 0.8 0.6 60.59 0.57
[low, high] 1.0 72.9 57.7 0.6 0.9 0.6 55.52 0.57

sia

None 0.0 79.4 61.5 0.6 0.8 0.6 58.21 0.61
low 0.5 78.6 60.4 0.6 0.8 0.6 63.34 0.58
low 1.0 78.6 60.4 0.6 0.8 0.6 60.66 0.58
high 0.5 72.0 56.9 0.6 0.9 0.6 57.40 0.55
high 1.0 66.6 53.3 0.55 1.0 0.5 57.06 0.52

[low, high] 0.5 77.3 58.7 0.6 0.8 0.6 57.77 0.58
[low, high] 1.0 71.8 56.7 0.6 0.9 0.6 58.35 0.56
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