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Abstract—Permutation learning is essential for organizing
high-dimensional data in optimization and machine learning.
Current methods like Gumbel-Sinkhorn require N? parameters
for N objects, operating on the full permutation matrix. While
low-rank approximations offer some reduction to 2NM (with
M < N), they still create a computational bottleneck for very
large datasets. SoftSort, a continuous relaxation of the argsort
operator, enables differentiable 1D sorting but struggles with
multidimensional data and complex permutations. We introduce
a novel method for learning permutations using only N param-
eters, dramatically reducing storage costs. Our method extends
SoftSort by iteratively shuffling the N indices of the elements
to be sorted and applying a few SoftSort optimization steps per
iteration. This significantly improves sorting quality, especially
for multidimensional data and complex criteria, outperforming
pure SoftSort. Our method offers superior memory efficiency and
scalability while maintaining high-quality permutation learning.
Its drastically reduced memory requirements make it ideal for
large-scale optimization tasks like ”’Self-Organizing Gaussians”,
where efficient and scalable permutation learning is critical.

Index Terms—Permutation Learning, Visual Image Explo-
ration, Sorted Grid Layouts

I. INTRODUCTION & RELATED WORK

Learning permutations is a fundamental challenge in ma-
chine learning, computer vision, and optimization. Many real-
world problems, such as ranking, assignment, and sorting,
require finding an optimal arrangement of elements [13], [15],
[16]. The challenge in efficiently learning permutations lies
in their discrete, binary matrix representation (one ’1° per
row/column), which prevents direct gradient-based optimiza-
tion.

While our proposed permutation learning method has broad
applicability across various fields, this paper focuses on its
use in distance-preserving grid layout algorithms for color or
visual image sorting (Figures 1 / 5) and 3D scene reconstruc-
tion in 3D Gaussian Splatting [7] (Figure 6). Sorting images
based on similarity enhances visual perception, enabling users
to efficiently explore hundreds of images simultaneously. In
3D scene reconstruction, organizing each scene attribute into
a sorted 2D grid increases spatial correlation, and the resulting
high-dimensional maps can be compressed using standard
codecs, achieving substantial reductions without sacrificing
rendering quality.
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Fig. 1.
by SoftSort (left) and the new proposed approach using the newly proposed
ShuffleSoftSort (right). The loss function minimizes the average color distance
of neighboring grid cells.

Example of grid-based sorting for 1024 random RGB colors sorted

A. Permutation Learning

Permutation learning aims to estimate a permutation matrix
Phara that sorts input vectors x into a desired order o
according to a predefined criterion. As depicted in Figure 2,
the fundamental challenge in this process is that matrix mul-
tiplication with the discrete Fp,q is not differentiable, which
prevents direct optimization. To circumvent this, a continuous
relaxation, Py, is optimized via a carefully designed loss
function. This function’s purpose is twofold: to ensure that
the final binarized Py (yielding Parg) is a valid permutation
and to guarantee it meets the specified optimization criteria.

w|T € RNxd

Loss

Gradient

. T
REEEEEREREPEEPERETTYRRY Function sort
: T3
l} Permutation o argmax s
‘ Approximation | P, ¢ e RV U P e
v 0.3 04 02 0.1 0 1 0 0]
w2 0.3 0.2 04 0.1 0010
: N2  Gumbel Sinkhorn 01 0.1 03 05 000 1
© | K={ 2NM Kissing . : . 9
Wk N ShuffleSoftSort  |0.6 0.1 0.1 0.2 100 0

Fig. 2. Permutation learning optimizes the differentiable permutation matrix
Pyofe by adjusting the weights w based on a given loss function. The number of
weights, K, depends on the chosen permutation approximation method. The
input vectors z are then reordered into Zsort using FPhard, Which is obtained
by applying a row-wise argmax operator to Pyof.
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This following discusses various differentiable permutation
learning approaches, from existing methods to our proposed
ShuffleSoftSort.

One of the most well-established approaches is the Gumbel-
Sinkhorn method [11]. This technique relaxes discrete permu-
tations into doubly stochastic matrices and applies Sinkhorn
normalization, allowing for end-to-end differentiable learning
of approximate permutations. While Gumbel-Sinkhorn can
generate high-quality permutations, it requires storing and
computing an N2 matrix, where IV is the number of elements
to be sorted. This quadratic memory consumption makes it
impractical for large-scale problems.

To mitigate these high memory requirements, low-rank fac-
torization techniques have been proposed, such as the ”Kissing
to Find a Match” method by Droge et al. [4]. This approach
approximates permutation matrices using a low-rank decom-
position, typically involving two row-normalized matrices V'
and W of size N x M, where M < N. The permutation
matrix is then approximated by P ~ VW7, followed by
scaling and row-wise softmax normalization. These methods
require only 2/NM parameters, significantly reducing memory
usage compared to Gumbel-Sinkhorn, though they may still
be too memory-intensive for very large problems.

An alternative is SoftSort [14], a continuous relaxation of the
argsort operator, which enables differentiable sorting. Unlike
Gumbel-Sinkhorn or low-rank methods, SoftSort requires only
N parameters, making it highly memory-efficient. However,
its inherent limitation to 1D sorting restricts its use in com-
plex permutation tasks like assignment problems or distance-
preserving grid layouts.

In this paper, we extend SoftSort to learn permutations with
only N parameters, specifically addressing its quality limita-
tions and enabling multi-dimensional sorting. Our proposed
ShuffleSoftSort technique overcomes these challenges.

B. Heuristic Distance-Preserving Grid Layout Algorithms

Distance-Preserving Grid Layouts optimize the assignment
of objects or images to grid positions by aligning spatial
proximity with the similarity relationships of their feature
vectors. Various algorithms have been proposed for arranging
vectors on a 2D grid, most of which rely on heuristic methods
that offer efficient performance. However, recent research
[2] has demonstrated that gradient-based learning techniques
can produce sorted grid layouts with superior sorting quality
compared to traditional approaches.

In the following sections, we present a brief overview of
the most commonly used non-learning methods.

A Self-Organizing Map (SOM) [8], [9] uses a grid of map
vectors with the same dimensionality as the input vectors. It
assigns these vectors to the most similar grid position and iter-
atively updates the map vectors based on their neighborhood.

A Self-Sorting Map (SSM) [17], [18] initializes grid cells
with input vectors and employs a hierarchical swapping pro-
cess. This method compares vector similarity with the average
of their grid neighborhood, considering all possible swaps
within a set of four cells.

Linear Assignment Sorting (LAS) [3] merges the concepts
of SOM (using a continuously filtered map) and SSM (per-
forming cell swaps), extending the idea to optimally swap
all vectors simultaneously. Fast Linear Assignment Sorting
(FLAS) improves runtime efficiency by iterative swapping
subsets, achieving sorting quality close to LAS.

Dimensionality reduction methods like t-SNE [19] and
UMAP [10] can project high-dimensional vectors onto a 2D
plane before grid arrangement. Linear assignment solvers,
such as the Jonker—Volgenant algorithm [6], then map these
positions to optimal grid locations. Fast placement strategies
are discussed in [5].

C. Contributions

In [2], we introduced the first gradient-based grid sorting
method using Gumbel-Sinkhorn. It ensures a valid permuta-
tion matrix while optimizing the grid arrangement for vector
similarity, achieving superior sorting quality. However, its
O(N?) memory demand limits scalability for large datasets.
To address this, we introduce ShuffleSoftSort, a novel SoftSort
extension for high-performance, memory-efficient permutation
learning. Our key contributions are:

o Memory Efficiency: ShuffleSoftSort uses only N pa-
rameters. It enhances SoftSort via iterated shuffling of
indices, enabling large-scale swaps and improving sorting
quality.

o Superior to Low-Rank Methods: ShuffleSoftSort out-
performs low-rank approximations like Kissing fo Find a
Match with significantly lower memory consumption.

o Scalable for Large-Scale Applications: Drastically re-
ducing memory needs compared to Gumbel-Sinkhorn
while maintaining strong performance, ShuffleSoftSort
enables scalable permutation learning for large opti-
mization tasks, e.g., Self-organizing Gaussians and data
visualization.

II. PROPOSED METHOD

Our new approach is based on SoftSort, which was orig-
inally developed as a continuous relaxation for the argsort
operator, defined as

SoftSort?(w) = softmaz (—D(w;ort,w)) , (D
with D(wgort, w) being the L1 distance matrix between the
sorted and the unsorted elements of the vector w. Row-wise
softmax increases matrix elements at positions where elements
coincide, while suppressing the others. With decreasing T
the matrix converges to the permutation matrix. SoftSort
produces valid permutations without iterated normalization,
but is poorly suited for high-dimensional data due to its
inherent one-dimensional sorting.

A limitation of SoftSort is illustrated by the 1D color toy
example in Figure 3. Achieving better color ordering (by swap-
ping yellow and magenta) necessitates traversing intermediate
positions that initially degrade quality, causing gradient-based
optimization to fail. Figure 1 (left) further demonstrates this in
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Fig. 3.

1D color arrangement highlighting SoftSort’s challenges (see text).

a 2D grid-based RGB color sorting scenario. Because SoftSort
uses a one-dimensional weight vector to represent element
order, any learned position change is restricted to this single
dimension, proving inadequate for complex reordering across
several rows.

Our newly proposed approach, ShuffleSoftSort, retains the
advantages of SoftSort, such as low memory usage and the
ability to easily achieve valid permutations, while improving
the quality of the permutations compared to SoftSort. Since
SoftSort can only perform one-dimensional sorting, it struggles
with problems like those shown in Figures 1 or 3. To solve
this problem, we circumvent the one-dimensional constraint
without altering the fundamental principle.

Our method iteratively reorganizes the elements’ indices
and then applies SoftSort to these updated one-dimensional
indices. By dynamically reordering the 1D input, we enable
element repositioning not achievable with a static input order.

Figure 4 highlights ShuffleSoftSort’s core concept, demon-
strating how its repeated shuffled index reorganization dramat-
ically improves sorting flexibility. Notably, the loss function
is computed on reverse-shuffled elements. Training involves
gradually decreasing 7, which minimizes the influence of more
distant elements. Consequently, sorting quality improves with
an increased number of iterations (R). Algorithm 1 presents
the ShuffleSoftSort procedure, which sorts the N elements of
a vector x, where each element has dimension d.

D | c RVXd
1 shuffle
D wshuf

lreverse shuffle 1
‘ ‘ sort LOSS

SoftSort

Fig. 4. ShuffleSoftSort enhances sorting by iteratively applying SoftSort to
randomly shuffled elements. The loss is computed on the reverse-shuffled
output, refining the permutation and addressing SoftSort’s limitations.

Algorithm 1 ShuffleSoftSort
for r=0to R do

_ Tend \ &
T= Tsmn( Tstart ) "

w = arange(0, N)
shuf_idx = randperm(N)

> Perform global iterations

> Decrease 7 from Tgart tO Tend

> Initialize SoftSort weights w linearly
> Generate random shuffle indices
x_shuf = x[shuf_idx] > Apply shuffle to input vector =
fori=1to [ do > Perform SoftSort inner optimization steps
perm_soft = soft_sort(w, 7) > Compute soft permutation matrix
x_sort_soft = perm_soft @ x_shuf > Apply soft permutation
x_sort_soft[shuf_idx] = x_sort_soft > Reverse shuffle for loss
get_loss(x_sort_soft, perm_soft).backward() > Loss backward pass
sort_idx = argmax(perm_soft, -1) > Extract hard permutation indices
x_sort = x[shuf_idx] = x_shuf[sort_idx] > Apply hard permutation

For grid-based sorting with ShuffleSoftSort, we use a loss
function that can be efficiently computed in a separable man-
ner. It builds on [2], incorporating the neighborhood loss L,
(the normalized average distance of neighboring grid vectors
in horizontal and vertical directions). However, it avoids the
computationally and memory-intensive distance matrix loss.
We define our loss function as follows (using P for Pyog):

L(P) = Lnbr(P) + )\sLs(P) +)\0LU(P) . 2

smoothness term

regularization terms

We obtained the best results by combining two loss com-
ponents to generate valid permutation matrices. The first reg-
ularization term, the stochastic constraint loss L4(P), ensures
that Py converges to a doubly stochastic matrix by penalizing
deviations from 1 in the column sums of the matrix:

Lo=53((Em)-) @

The L, (P) term is the standard deviation loss. It encour-
ages Py to preserve original feature statistics by minimizing
the sum of absolute differences between the column-wise
standard deviations of x and y = Py - , normalized by
the sum of o,. o, and o, are the vectors of column-wise
standard deviations for x and y, respectively.
Loz —ayl

Lo(P) = = T

The following table summarizes the properties of the dis-
cussed permutation approximation methods, along with the
characteristics of our proposed ShuffleSoftSort scheme. Stabil-
ity here means how certain it is to obtain a valid permutation
matrix without duplicates.

4)

gﬁ?}?:; Kissing | SoftSort | Ours
Number of Parameters K N2 2NM N N
Non-iterative normalization no yes yes yes
Quality ++ + - ++
Stability + o ++ 4+
TABLE I

COMPARISON OF PERMUTATION APPROXIMATION METHODS

The proposed new sorting strategy extends to other per-
mutation learning tasks, with the key idea of continuously
modifying the index order to allow for greater flexibility in
sorting. For a memory-efficient implementation, it is crucial
to compute the permutation matrix and the loss components
in a row-wise manner, as the complete storage would require
N? elements.

III. EXPERIMENTAL EVALUATION

In this section, we compare Gumbel-Sinkhorn, Kissing to
Find a Match, and SoftSort with our newly introduced Shuf-
fleSoftSort. The evaluation is conducted using 1024 randomly
generated RGB colors. For consistency, the loss function from
[2] is employed for the first three methods, while ShuffleSoft-
Sort uses its adapted version from Eq. 2.
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Training parameters were set as follows: regularization
parameters A; = 1 and A\, = 2; a learning rate of 0.3; 7y = 1
and 7., = 0.1. The global iterations X were set to 2500, and
the inner SoftSort iterations I to 3. While ShuffleSoftSort’s
inner SoftSort loop typically yields a valid permutation matrix,
SoftSort iterations are extended in very rare cases where
permutation matrix columns contain duplicates, ensuring a
valid permutation is ultimately achieved.

In grid-based sorting scenarios, ShuffleSoftSort’s perfor-
mance can be further enhanced. The shuffling process can
be adapted to progressively reduce the range of possible
positional changes during training. This ensures that towards

for stock agencies and e-commerce platforms, where efficient
browsing is key.

Visual feature vectors, generated through image analysis
or deep learning, help organize images by content. Low-
level feature vectors, with tens of dimensions, are often more
effective for sorting larger image sets, as they enable users
to group similar images easily. In that study [3] and the
sorting shown in Figure 5, we used 50-dimensional low-
level feature vectors to capture the key visual properties for
sorting. Applying grid-based sorting to these vectors results in
organized, visually meaningful layouts, as shown below.

the end of training, only closely located positions are swapped. W w|s|==wl=U| _ ﬁ OV T
. . . . = - —T—T1=—1- YE -
Futh.ermore, it’s beneﬁm.al to alternate the. 1ndex%ng of 2D .@3 = | = | | 'u = "‘\a] “IndndEdB
positions between row-wise and column-wise. This strategy - w—-re < B ﬂ N SHENEEY
enables fine-grained positional adjustments in both horizontal ' al= \H‘ = = L]y H, d
and vertical directions. S et B Dt et il . AC_ J O S X
- —|< . s | 1 \[
The table below compares these methods pased on memory =\ | @@= | |0 UlY U
requirements for llearnable? parameters, runtnpe on an Apple — ) S - B {) Ol [\
M1 Max, and sorting quality, measured by Distance Preserva- = - = . — "‘:\ =
tion Quality (DPQ;4). As demonstrated in [3], DPQ;4 is a \/|o|& el o <UL U Lj H U
perceptually driven metric that closely aligns with human vi-  |wg |0 D = [ Y| L) [ i ; e/ i ::I H" TI
sual J}ldgmgnt and strongly.correlates with the. mean snmlzjlrlty a3 =|ele [l 1B wlo Wfﬂ mo m
to neighboring elements. Figure 1 shows the images obtained \ — (e =
with SoftSort and ShuffleSoftSort. 2=~ e il . ol L 0} N
Method Memory | | Runtime [s] | | Quality 1 A 7| | 'D J ‘ Tﬁ’ 'l J IMH
Gumbel-Sinkhorn [11] 1048576 226.8 0.913 || ||| D[ jfp r
Kissing [4] 26624 114.4 —* - - " z
SoftSort [14] 1024 1107 0.698 || [ W& el i
ShuffleSoftSort (ours) 1024 91.5 0.909 | B RN g L S L W ]
*Y 1 1 at1
) invalid permutation i 7 [ w f ";.
TABLE II = -
EVALUATING PERMUTATION LEARNING METHODS ON COLOR SORTING ! ’ { _ fi’ il el vV w
Fig. 5. Sorting example of a dataset of e-commerce images, simplifying

Further experiments are needed to optimize the parameter
settings. However, this table already demonstrates the over-
all feasibility and effectiveness of the proposed approach,
achieving high quality with lowest memory and computational
demands. The runtimes are not optimal and only have a
relative meaning, as the implementations were not created as
optimized GPU applications. ShuffleSoftSort benefits from the
fact that its loss function is considerably simpler than that of
the other schemes. Notably, the kissing approach exhibits poor
convergence due to its simple softmax normalization, often
failing to produce valid permutation matrices.

IV. APPLICATIONS
A. Grid-based Image Sorting

Viewing large volumes of images is a cognitive challenge,
as human perception becomes overwhelmed when too many
images are displayed at once. To address this, most ap-
plications limit the visible images to around 20. However,
sorting images based on the similarity of their visual feature
vectors enhances navigation, allowing users to view hundreds
of images simultaneously. This method is particularly useful

navigation, browsing, and retrieval of large image databases.

B. Self-Organizing Gaussians

Another application for large scale permutation learning can
be found in the field of 3D scene reconstruction, specifically
in 3D Gaussian Splatting (3DGS) [7]. 3DGS has found a lot
of attention in recent years, as it solves several challenges
in 3D scene reconstruction, such as rendering performance,
photorealism, explicitness, or explainability compared to prior
methods. On the downside, however, 3DGS suffers from
very large storage sizes. This is because 3DGS stores a 3D
scene as an unstructured point cloud with millions of data
points, each consisting of several parameters like position,
scale, orientation, opacity, base color and optionally spherical
harmonics. As a result, larger scenes can take up several
gigabytes of storage, making them less portable. This has
motivated significant research [1] for efficient compression of
these datasets. In contrast to other multimedia data, 3DGS
data exhibits an interesting property, namely the ambiguity
for point ordering. Any reshuffling of Gaussian Splats will
lead to exactly the same results, which has been exploited
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by Self-Organizing Gaussians (SOG) [12]. Instead of storing
the data points in vectors, SOG creates a sorted 2D grid for
each of the scenes attributes, as shown in Figure 6, increasing
spatial correlation of neighboring points. By incorporating
a 2D smoothness loss also in the optimization process of
the ambiguous splat configurations, further gains can be
achieved. The high dimensional maps are then compressed
using standard image compression codecs, allowing for up
to 40x storage reduction without compromising in rendering
quality. The original SOG uses a heuristic non-differentiable
sorting, given the large number of data points /N. However, the
proposed method offers gradient-based permutation learning
also for such large datasets, requiring only the storage of NV
parameters instead of N2. This allows for optimally sorting
millions of data points without exceeding the memory capacity
and enabling end-to-end learning for scene reconstruction.

opacity: a
orientation: g,..,q,
scale: S5y,

.| —— position: x,y,z

— color:r,g,b

Fig. 6. Top: photorealistic rendering of a Gaussian Splatting scene; bottom:
same Gaussians with all attributes sorted into a 2D grid using [12], which
enforces high spatial correlation of points for efficient compression.

V. CONCLUSION

This work presented ShuffleSoftSort, a novel approach
to permutation learning designed for high sorting quality
with drastically reduced memory requirements. Our method
achieves this by employing an iterative shuffling mecha-
nism, enabling efficient /NV-parameter permutation learning,
a significant advance over Gumbel-Sinkhorn and low-rank

approximations. The demonstrated strong performance and
superior memory efficiency make ShuffleSoftSort highly valu-
able for diverse large-scale optimization tasks, including Self-
Organizing Gaussians, data visualization, and other complex
permutation problems. Its versatility is further exemplified
by applications like solving Sudokus, which can be explored
in our GitHub repository. Future research will focus on
further optimizing and extending these differentiable sorting
techniques for multidimensional applications. Our code and
experiments can be found at:
https://github.com/Visual-Computing/ShuffleSoftSort
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