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Abstract—Information about the input admittance of a 

three-phase grid connected inverter is important in stability 

assessment when connected to a power grid. However, existing 

neural network (NN)-based estimation methods typically 

require extensive training data and depend on frequency sweep 

as an additional input to generalize the estimation. This paper 

proposes a data-driven fuzzy logic system (FLS) for input 

admittance estimation of a three-phase grid-connected inverter, 

achieving generalization using only the system's operating 

points (OPs) as inputs, without requiring frequency 

information. By defining a limited set of rule bases, the transfer 

function (TF) coefficients of the input admittance are deduced 

as the FLS output, without requirement on extensive training 

data. Simulation results have confirmed the efficiency of the 

proposed method.  

Keywords— Input admittance, grid connected inverter, 

stability, fuzzy logic system and machine learning) 

I. INTRODUCTION  

In modern power systems, inverter-based resources 

(IBRs) are replacing traditional synchronous generators, 

playing a vital role in stability and reliability [1, 2]. Small-

signal stability analysis, especially the admittance-based 

approach, is essential for identifying instabilities and 

measuring stability margins. This approach requires two 

main elements: the grid impedance and the IBR’s input 

admittance [3]. While grid impedance can often be 

determined, estimating IBR admittance is more complex due 

to control loops operating at various time scales and limited 

vendor-provided details, especially in commercial IBRs like 

solar PV and wind farms [4, 5]. Admittance models also 

depend on operating conditions, which poses challenges [6]. 

To address this, both analytical and data-driven methods are 

used to create generalized admittance models [7]. Analytical 

methods are often impractical due to limited control 

information from vendors and complex calculations, making 

it difficult to address operating point (OP) dependency. Data-

driven machine learning (ML) models, on the other hand, 

derive inverter admittance models based on training data, 

incorporating OPs and frequency sweep as inputs [8]. For 

example, recurrent neural network (RNN) [9] and 

feedforward neural network (NN) [10] have been applied to 

estimate system impedance, while support vector machine 

(SVM) approach [11] has been used in the DQ frame. Some 

methods use transfer learning or a two-stage approach 

combining offline modeling with online training to optimize 

performance [12, 13]. A stacked autoencoder-based 

framework was proposed for predicting impedance profiles 

of voltage source converters across various OPs, offering 

scalability for multi-converter systems and the ability to 

predict impedance at unstable points based solely on stable 

operation data [14]. Another approach uses a double deep 

neural network (DNN) to model impedance and estimate 

stability regions for grid-converter interaction systems [15]. 

That method addressed the challenge of varying OPs caused 

by fluctuating renewable energy, enabling accurate and fast 

online stability evaluation. Although these ML approaches 

effectively estimate input admittance based on operating 

points, their reliance on extensive training data and the need 

to incorporate a frequency sweep as an additional input to 

generalize the estimation add complexity, making them less 

practical for real-world applications. 

Fuzzy logic systems (FLSs), as one of the significant tools 

in data-driven modeling methods, offer advantages over NNs 

when modeling a system with limited data [16]. By 

incorporating expert knowledge, they compensate for data 

scarcity, providing transparent models that handle 

uncertainty well. Their rule-based approach is conducive to 

small datasets, reducing the risk of over-fitting often seen in 

NNs [16]. This paper proposes an FLS to estimate the 

admittance of a grid-tied inverter, using OPs as inputs and 

deducing the numerator and denominator coefficients of the 

input admittance transfer function (TF) as outputs. The FLS 

is tuned using data obtained from grid-connected inverter 

simulations at selected OPs. At each OP, frequency scanning 

generates admittance Bode diagrams, from which numerator 

and denominator coefficients are extracted to directly define 

the consequent parameters and fuzzy rules. Unlike 

conventional ML methods, the proposed FLS: (1) builds rules 

with minimal data (no intensive training), and (2) generalizes 

across frequencies without sweep inputs.  

The remainder of this paper is organized as follows: 

Section 2 discusses the input admittance calculation of a grid-

connected inverter. The proposed FLS approach is introduced 

in Section 3, followed by simulation results in Section 4 and 
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conclusions in Section 5. 

II. GRID CONNECTED INVERTERS AND THEIR INPUT 

ADMITTANCE 

A typical configuration of a grid-connected inverter is 

illustrated in Fig 1. In this figure, considering a DC source, 

switching devices, the designed controllers and filters, if the 

input admittance has a nonnegative conductance at all 

frequencies, the inverter will hardly encounter instabilities. 

However, in practical applications, vendors of IBRs provide 

limited information regarding the hardware configurations 

and control algorithms of these IBRs. One approach to 

measuring the inverter's input admittance, treating it as a 

black box, is frequency response estimation. Known as the 

frequency scanning method, this technique injects sinusoidal 

signals in the DQ frame and analyzes the system's steady-

state response. 

Inverter

Filter

𝒊𝒄𝒄 𝒗𝒄𝒄 

Power and current 

Controllers

Utility grid
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𝒂𝒃𝒄 

𝒅𝒒 

Fig 1: Schematic of a grid-tied inverter and the frequency scanning 

technique for input admittance estimation 

The discrete Fourier transform (DFT) can be utilized to 

extract the amplitude and phase, ultimately obtaining the 

frequency response similar to a Bode diagram [17, 18]. The 

obtained Bode diagram can be represented in the DQ frame 

as follows:  

𝑌𝑑𝑞 = [
𝑦𝑑𝑑(𝑠) 𝑦𝑑𝑞(𝑠)

𝑦𝑞𝑑(𝑠) 𝑦𝑞𝑞(𝑠)
], 

(1) 

where 𝑦𝑑𝑞  and 𝑦𝑞𝑑  represent the admittance’s off-diagonal 

elements, while 𝑦𝑑𝑑  and 𝑦𝑞𝑞 denote the diagonal admittances 

in the 𝑑  and 𝑞  axes, respectively. Any element in the 

admittance model Eq. (1) can be expressed in the following 

general form, consisting of numerator and denominator 

polynomials [2, 10]: 

𝑌𝑑𝑞(𝑠) =

[

𝑎𝑑𝑑,𝑚11𝑠
𝑚11+⋯+𝑎𝑑𝑑,1𝑠

1+𝑎𝑑𝑑,0

𝑠𝑛11+⋯+𝑏𝑑𝑑,1𝑠
1+𝑏𝑑𝑑,0

𝑎𝑑𝑞,𝑚12𝑠
𝑚12+⋯+𝑎𝑑𝑞,1𝑠

1+𝑎𝑑𝑞,0

𝑠𝑛12+⋯+𝑏𝑑𝑞,1𝑠
1+𝑏𝑑𝑞,0

𝑎𝑞𝑑,𝑚21𝑠
𝑚21+⋯+𝑎𝑞𝑑,1𝑠

1+𝑎𝑞𝑑,0

𝑠𝑛21+⋯+𝑏𝑞𝑑,1𝑠
1+𝑏𝑞𝑑,0

𝑎𝑞𝑞,𝑚22𝑠
𝑚22+⋯+𝑎𝑞𝑞,1𝑠

1+𝑎𝑞𝑞,0

𝑠𝑛22+⋯+𝑏𝑞𝑞,1𝑠
1+𝑏𝑞𝑞,0

], 

 

(2) 

where 𝑚𝑖𝑗 and 𝑛𝑖𝑗 (for 𝑖, 𝑗 = 1,2) represent the orders the of 

numerator and denominator of each TF, respectively, and 

𝑎𝛼𝛽,𝑚𝑖𝑗
 and 𝑏𝛼𝛽,𝑛𝑖𝑗  (for 𝛼 , 𝛽 ∈ (𝑑, 𝑞) ) denote the matrix 

coefficients of the numerator and denominator. 

When the grid impedance 𝑍𝑔(𝑠) is known, stability can be 

evaluated by analyzing the poles of the characteristic 

polynomial of the inverter-grid system, given by 

However, the numerator and denominator coefficients of 𝑌𝑑𝑞  

vary with changes in the system's OPs, necessitating new 

measurements to update the matrix entries as conditions 

change. To illustrate this, the Bode diagram of 𝑦𝑞𝑞(𝑠)  is 

plotted in Fig 2 for three different OPs- OP#1, OP#2, and 

OP#3- for the IBR system shown in Fig 1. Note that these 

Bode diagrams can be obtained for the other admittance 

entries ( 𝑦𝑑𝑑 , 𝑦𝑑𝑞 , and 𝑦𝑞𝑑 ). The figure highlights that 

variations in OPs significantly affect both the magnitude and 

phase of 𝑌𝑑𝑞(𝑠). These variations can critically impact IBR 

stability (Eq.(3)). For each Bode diagram corresponding to 

the three OPs (OP#1, OP#2, and OP#3) depicted in Fig 2, the 

frequency response data (FRD) function was employed to fit 

TFs as represented in Eq. (2).  

 

Fig 2: Bode diagram of 𝑦𝑞𝑞 for three different Ops 

For OP#1, the fitted TF obtained with the FRD function is 

𝑦𝑞𝑞(𝑠) =
𝑠2+15𝑠+500

𝑠3+200𝑠2+108𝑠
 with 95% accuracy. For OP#2, the 

fitted TF is 𝑦𝑞𝑞(𝑠) =
0.9𝑠2+13.5𝑠−360

𝑠3+160𝑠2+105𝑠
 with 99% accuracy, and 

for OP#3 is 𝑦𝑞𝑞(𝑠) =
16𝑠2+0.09𝑠

𝑠2+0.2𝑠+110
 with 97% accuracy. These 

results indicate that changes in the OP lead to variations in 

the numerator and denominator coefficients (𝑎𝛼𝛽,𝑚𝑖𝑗
 and 

𝑏𝛼𝛽,𝑛𝑖𝑗 ), affecting the poles and zeros of the admittance 

matrix 𝑌𝑑𝑞 . Since the numerator and denominator coefficients 

of  𝑌𝑑𝑞  change with the operating point, continuously 

updating them is crucial for an accurate analysis of inverter-

grid interactions. However, relying on new frequency-

domain measurements each time is impractical, as the 

frequency-scanning method is both costly and time-

consuming. To tackle this issue, feedforward neural network 

(NN)-based approaches were proposed in [19] to estimate 

input admittance across a wide range of operating conditions. 

The NN was trained on datasets representing admittance 

characteristics under various scenarios, and once trained, it 

can estimate both the real and imaginary components of the 

input admittance. However, their effectiveness depends on 

having a large and diverse training dataset, as well as 

incorporating an additional input, such as a 'frequency 

sweep,' to generalize the admittance calculations across 

different frequencies. This, in turn, adds complexity to their 

implementation.  

To address these challenges, the following section 

proposes a data-driven method based on fuzzy logic systems 

(FLS) to overcome these limitations. This approach estimates 

the inverter’s admittance using a much smaller training 

dataset and eliminates the need for a frequency sweep, 

thereby enhancing both efficiency and practicality. In the 

proposed FLS method, the OP serves as the input, while the 

outputs are the numerator and denominator coefficients of 

𝑃𝐼𝐺 = [𝐼 + 𝑌𝑑𝑞(𝑠)𝑍𝑔(𝑠)]
−1
. (3) 
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𝑌𝑑𝑞 , enabling dynamic adaptation to varying operating 

conditions. It is also important to highlight that analyzing the 

poles and zeros of the transfer function, which can be 

accomplished using the proposed FLS method, offers 

valuable insights into inverter stability. For example, OP#2’s 

TF has a zero in the right half-plane (RHP), which, when 

connected to a weak grid, could shift the root locus rightward, 

reducing stability and causes oscillations in the voltage and 

current at the point of common coupling (PCC) as illustrated 

(for phase a) in Fig 3. 

 

Fig 3. Voltage at PCC when the inverter with OP#2 connected to a weak 

grid 

III. PROPOSED FLS FOR ADMITTANCE ESTIMATION 

FLSs provide a powerful approach for modeling complex 

systems and accurately estimating their outputs. They 

effectively handle the inherent uncertainty and imprecision 

present in real-world scenarios. By leveraging linguistic 

variables and fuzzy sets, FLSs can capture the complexities 

of system behavior, resulting in more precise modeling. 

Additionally, the adaptive nature of FLSs allows them to 

dynamically adjust to changing input conditions, ensuring 

reliable output estimations across diverse environments [16]. 

This flexibility makes fuzzy logic particularly effective for 

systems with incomplete or noisy data. In this context, since 

the coefficients of the admittance TF depend on the OPs of 

the IBR, the goal is to utilize an FLS to estimate these 

coefficients over a wide frequency range. The overall 

structure of the proposed FLS-based admittance estimation 

method is shown in Fig 4. 

In this framework, the designed FLS takes the OPs as input 

and applies fuzzification, fuzzy inference, and 

defuzzification based on predefined rules to determine the 

input admittance coefficients 𝑎𝛼𝛽,𝑚𝑖𝑗
 and 𝑏𝛼𝛽,𝑛𝑖𝑗 . The 

estimated 𝑌𝑑𝑞(𝑠)  is then obtained and used to assess the 

stability of the inverter-grid connection. In the proposed 

method, a Mamdani-type FLS is employed to formulate the 

IF-THEN rules for estimating the numerator and denominator 

coefficients of 𝑦𝑞𝑞(𝑠) in the grid-tied inverter are formulated 

as follows: 
If 𝑃 is 𝑃1 and 𝑄 is 𝑄1 THEN 𝑎𝑞𝑞,𝑖 is 𝑎𝑞𝑞

∗  and 𝑏𝑞𝑞,𝑗 is 𝑏𝑞𝑞
∗ , (4) 

where 𝑃1 and 𝑄1 are linguistic variables (antecedent part) 

and 𝑎𝑞𝑞
∗  and 𝑏𝑞𝑞

∗  (in the vector form) denote the numerator 

and denominator coefficients (consequent part) of the 

corresponding admittance TF.  

Power 

calculation

𝒊𝒄𝒄 𝒗𝒄𝒄 

 Controllers

+ 

Fuzzy 

Inference

Fuzzy

 rules

Defuzzification

𝑷 

𝝁𝑷 

D
C

-

𝑸 

𝝁𝑸 

Fuzzification

Black box

Inverter System

Inverter- Grid Stability

Eq.(3)

𝒀 𝒅𝒒(𝒔) 

𝒂𝜶𝜷,𝒎𝒊𝒋
  

𝒃𝜶𝜷,𝒏𝒊𝒋 

Construct Admittance 

Transfer Functions

Fig 4: The proposed FLS-based admittance estimation of IBRs 

The FLS tuning process comprises two main stages: (1) 

designing the antecedent MFs based on expert knowledge, 

and (2) determining the consequent crisp MFs and rule base 

through systematic simulations of the grid-connected inverter 

(nine simulations). 

Given the known operational range of the antecedent parts 

(active and reactive powers), three MFs—labeled as small 

(𝑃𝑠, 𝑄𝑠), medium (𝑃𝑀, 𝑄𝑀), and large (𝑃𝐿 , 𝑄𝐿) (see Fig 5) —

are defined for each input. In this study, the Medium MFs are 

centered at nominal values of 𝑃𝑜 = 5𝐾𝑤 and 𝑄0 = 0𝐾𝑣𝑎𝑟. 

The Small and Large MFs are symmetrically offset by ∆0=
5𝐾𝑤  and ∆1= 4𝐾𝑣𝑎𝑟 , respectively, to effectively capture 

the full range of input variations. This uniform partitioning of 

the input space facilitates effective fuzzy rule formulation. 

The FLS utilizes three MFs per input, resulting in nine rules 

(as specified in Eq.(4)). 

𝑷 

𝝁𝑷 

𝑃0 𝑃0 + ∆0 𝑃0 − ∆0 

𝑃𝐿 𝑃𝑀 𝑃𝑆 

 
𝑸 

𝝁𝑸 

𝑄0 + ∆1 
𝑄0 𝑄0 − ∆1 

𝑄𝐿 

 

𝑄𝑀 𝑄𝑆 

 
Fig 5: Input MFs for the proposed FLS 

To determine the consequent MFs (modeled as crisp 

numbers), nine simulations were performed under distinct 

operating conditions: at the nominal points (𝑃𝑜, 𝑄𝑜) and their 

variations (𝑃𝑜 ± ∆0, 𝑄𝑜 ± ∆1).  
 Table 1: derived rule bases for the proposed FLS-based 

admittance estimation method  
 

𝑃𝑆 𝑃𝑀 𝑃𝐿 

𝑄𝑆 

𝒂𝒅𝒅,𝟐 = 𝟎.𝟐, 𝒂𝒅𝒅,𝟏 = 𝟏𝟎𝟖, 

𝒂𝒅𝒅,𝟎 = 𝟎 

𝒃𝒅𝒅,𝟐 = 𝟏, 𝒃𝒅𝒅,𝟏 = 𝟏𝟒, 

𝒃𝒅𝒅,𝟎 = 𝟒𝟐𝟖 

𝒂𝒅𝒅,𝟐 = 𝟏,𝒂𝒅𝒅,𝟏 = 𝟎. 𝟐, 

𝒂𝒅𝒅,𝟎 = 𝟏𝟎𝟖 

𝒃𝒅𝒅,𝟐 = 𝟎, 𝒃𝒅𝒅,𝟏 = 𝟎.𝟏, 

𝒃𝒅𝒅,𝟎 = 𝟏𝟑. 𝟔 

𝒂𝒅𝒅,𝟑 = 𝟏,𝒂𝒅𝒅,𝟐 =
𝟐𝟎𝟎, 𝒂𝒅𝒅,𝟏 = 𝟏𝟎𝟖 , 

𝒂𝒅𝒅,𝟎 = 𝟎, 

𝒃𝒅𝒅,𝟐 = 𝟎. 𝟗, 𝒃𝒅𝒅,𝟏 =
𝟏𝟐. 𝟓, 𝒃𝒅𝒅,𝟎 = −𝟒𝟔𝟎 

𝑄𝑀 

𝒂𝒅𝒅,𝟑 = 𝟏,𝒂𝒅𝒅,𝟐 =

𝟐𝟎𝟎, 𝒂𝒅𝒅,𝟏 = 𝟏𝟎𝟖, 𝒂𝒅𝒅,𝟎 =
𝟎 

𝒃𝒅𝒅,𝟐 = 𝟏, 𝒃𝒅𝒅,𝟏 = 𝟏𝟓, 

𝒃𝒅𝒅,𝟎 = 𝟓𝟎𝟎 

𝒂𝒅𝒅,𝟐 = 𝟏,𝒂𝒅𝒅,𝟏 = 𝟎. 𝟐, 

𝒂𝒅𝒅,𝟎 = 𝟏𝟎𝟗 

𝒃𝒅𝒅,𝟐 = 𝟎, 𝒃𝒅𝒅,𝟏 = 𝟎.𝟏, 

𝒃𝒅𝒅,𝟎 = 𝟏𝟒 

𝒂𝒅𝒅,𝟑 = 𝟏,𝒂𝒅𝒅,𝟐 =

𝟏𝟔𝟎, 𝒂𝒅𝒅,𝟏 = 𝟏𝟎𝟓, 

𝒂𝒅𝒅,𝟎 = 𝟎 

𝒃𝒅𝒅,𝟐 = 𝟎. 𝟗, 𝒃𝒅𝒅,𝟏 =
𝟏𝟑. 𝟓, 𝒃𝒅𝒅,𝟎 = −𝟑𝟔𝟎 

𝑄𝐿 

𝒂𝒅𝒅,𝟐 = 𝟏𝟎𝟖, 𝒂𝒅𝒅,𝟏 = 𝟐𝟎𝟎, 

𝒂𝒅𝒅,𝟎 = 𝟎 

𝒃𝒅𝒅,𝟐 = 𝟏, 𝒃𝒅𝒅,𝟏 = 𝟏𝟔, 

𝒃𝒅𝒅,𝟎 = 𝟔𝟎𝟎 

𝒂𝒅𝒅,𝟐 = 𝟏,𝒂𝒅𝒅,𝟏 = 𝟎. 𝟐, 

𝒂𝒅𝒅,𝟎 = 𝟏𝟏𝟎 

𝒃𝒅𝒅,𝟐 = 𝟏𝟔, 𝒃𝒅𝒅,𝟏 =
𝟎.𝟎𝟒, 𝒃𝒅𝒅,𝟎 = 𝟎 

𝒂𝒅𝒅,𝟐 = 𝟏,𝒂𝒅𝒅,𝟏 = 𝟎. 𝟐, 

𝒂𝒅𝒅,𝟎 = 𝟏𝟎𝟎 

𝒃𝒅𝒅,𝟐 = 𝟏𝟒, 𝒃𝒅𝒅,𝟏 = 𝟎.𝟏, 

𝒃𝒅𝒅,𝟎 = 𝟎 

For each simulation scenario where the inverter operates at 

specific active and reactive power levels ((𝑃𝑠, 𝑄𝑠), (𝑃𝑀, 𝑄𝑀), 

and (𝑃𝐿 , 𝑄𝐿)), a Bode diagram is generated. From each Bode 

plot, the TF's numerator and denominator coefficients are 

extracted. The consequent parameters derived from these 

simulations are summarized in Table 1, thereby establishing 

the complete rule base for the FLS model. 
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Fig 6: Control surface for the denominator coefficients 𝑏𝑑𝑑,0 

It should be noted that in this table, fuzzy rules related to 

𝑦𝑞𝑞  of the admittance matrix are provided due to its 

importance. However, similar rules can be defined for other 

elements of the admittance matrix. The control surfaces for 

the denominator coefficients 𝑏𝑑𝑑,0, which play a crucial role 

in the stability analysis of the system, are shown in Fig 6. By 

examining these surfaces, one can observe the relationship 

between the input variables and the resulting coefficients, 

providing valuable insights into the system's stability under 

varying operating conditions. 

IV. SIMULATION RESULTS 

The goal of this section is to demonstrate that the proposed 

FLS-based admittance estimation can generalize to various 

OPs beyond those specifically used to define the rules. In 

addition to the proposed FLS-based admittance estimation, a 

comparison has been made with results obtained from the 

feedforward NN [8]. Unlike the FLS method, where the rule 

bases are designed using specific OPs, the feedforward NN 

incorporates not only the OPs of the system but also the 

frequency sweep as an additional input to generalize the 

model. The output of feedforward NN is designed to estimate 

both the real and imaginary components of the admittance at 

the specified frequency. This feedforward NN was trained, 

validated, and tested using a comprehensive dataset with 

sufficient data points to ensure robust performance.  
 

Case 1: For OP with 𝑃1 = 9𝐾𝑤 and 𝑄1 = −2.5𝐾𝑣𝑎𝑟, the 

performance of the proposed FLS method is compared to 

feedforward NN-based methods, with results presented in Fig 

7 and Table 2. From these results, it is evident that the FLS 

method outperforms the NN-based approach, particularly at 

lower frequencies in the phase diagram. These low 

frequencies are crucial for sub-synchronous stability analysis, 

making the FLS method more effective in this context. 

Additionally, the FLS method offers improved accuracy 

while requiring fewer training data and eliminating the need 

for a frequency sweep to generalize admittance estimation, 

further enhancing its suitability for online applications. The 

FLS utilizes the firing strengths of four rules (2, 3, 5, and 6), 

with rules 3 and 6 having the highest influence. The derived 

coefficients are 𝑎𝑑𝑑,2 = 165, 𝑎𝑑𝑑,1 = 109, 𝑎𝑑𝑑,0 = 54, and 

𝑏𝑑𝑑,2 = 1 , 𝑏𝑑𝑑,1 = 11.5, and 𝑏𝑑𝑑,0 = −325, resulting in a 

zero in the RHP. These coefficients demonstrate the 

generability of the proposed FLS, as the corresponding OP 

results in a zero in the RHP, consistent with the rules defined 

in Table 1. Given these coefficients, careful consideration is 

required when connecting this inverter—operating under the 

mentioned OPs—to a weak grid, as it may cause oscillations 

in the current and voltage at the PCC.  

 

Fig 7: the estimated 𝑦𝑞𝑞(𝑠) using the proposed FLS and feedforward NN 

methods for the first case 

Specifically, when the inverter is connected to a grid with 

an impedance of 𝑍𝑔 = 1 + 5 × 10−3𝑠, instability in the PCC 

voltage and current occurs, with the current in the DQ frame 

depicted in Fig 8. This figure clearly illustrates how weak 

grid conditions can trigger oscillations in the inverter-grid 

connection, emphasizing the need for thorough stability 

evaluations in such scenarios. 

 
Fig 8. Currents at PCC for the inverter-grid system in case 1 

Case 2: For OP 𝑃2 = 2.5𝐾𝑤  and 𝑄2 = −1𝐾𝑣𝑎𝑟 , the 

estimated admittance results obtained using the proposed 

FLS method and the NN-based method are presented in Fig 

9 and Table 2. The results clearly demonstrate the efficiency 

of the proposed method. For this OP, the activated FLS rules 

(1, 2, 4, and 5) yield the following coefficients: 𝑎𝑑𝑑,2 = 200, 

𝑎𝑑𝑑,1 = 1069 , 𝑎𝑑𝑑,0 = 109 , and 𝑏𝑑𝑑,2 = 1 , 𝑏𝑑𝑑,1 = 19.5 , 

and 𝑏𝑑𝑑,0 = 110. Unlike case 1, the inverter admittance here 

does not have a zero in the RHP which is consistent with the 

defined rules in Table 1. This demonstrates the FLS method's 

ability to ensure stable operation across different OPs, while 

also highlighting its key advantages: it neither requires large 

amounts of training data nor a frequency sweep as an 

additional input, as needed by the NN-based method. 

Furthermore, a simulation is conducted to verify the stability 

of the inverter (with the OPs in Case 2) when connected to 
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the grid with the impedance given in Case 1.  

 

Fig 9: the estimated 𝑦𝑞𝑞(𝑠) using the proposed FLS and feedforward NN 

methods for the second case 

 
Table 2: MAPE index comparison of FLS and feedforward NN 

methods 

 Proposed FLS method   Feedforward NN method 

 Magnitude  Phase    Magnitude  Phase  
Case 1 5.13% 6.08%   7.78% 17.58% 
Case 2 2.21% 3.18%   6.45% 17.51% 

Unlike in Case 1, where instability occurred due to a RHP 

zero in the admittance TF, the coefficients in this case remain 

positive, ensuring a stable connection. The simulation results, 

presented in Fig 10, confirm that the PCC current remains 

stable, further demonstrating the effectiveness of the 

proposed FLS method in maintaining stability across 

different operating conditions. 

 

Fig 10. Currents at PCC for the inverter-grid system in case 2 

V. CONCLUSION 
In this paper, a novel data-driven FLS-based approach has 

been developed for estimating the input admittance of a three-

phase grid-connected inverter. In the proposed method, the 

OPs of the system are used as inputs to the FLS, which then 

deduces the numerator and denominator coefficients of the 

inverter's input admittance transfer function. The rule bases 

of the proposed FLS are defined using limited measurements 

carried out in the DQ frame. Compared to existing 

feedforward NN-based methods, the proposed strategy 

requires limited training data and eliminates the need for 

additional inputs such as frequency sweeps, enhancing its 

suitability for online applications. Future studies will focus 

on experimental FLS training and real-time deployment for 

grid-tied inverters. 
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