
Learning to Sort in Continuous Spaces: Neural
Architectures and Iterative Training Strategies

Matthieu CORNU
Thales DMS France, Elancourt

Systèmes et Applications des Techno-
logies de l’Information et de l’Energie,

Université Paris-Saclay,
ENS Paris-Saclay, CNRS, Paris-Saclay

matthieu.cornu@thalesgroup.fr

Cyrille ENDERLI
Thales DMS France, Elancourt

cyrille-jean.enderli@fr.thalesgroup.com

Thomas RODET
Systèmes et Applications des Techno-

logies de l’Information et de l’Energie,
Université Paris-Saclay,

ENS Paris-Saclay, CNRS, Paris-Saclay
thomas.rodet@ens-paris-saclay.fr
ORCID: 0000-0003-0473-9390

Abstract—Sorting is a fundamental problem in computer
science and plays a crucial role in mechanistic interpretability
due to its direct link with comparison and ordering mechanisms.
Recent research has explored AI-assisted sorting, primarily in
discrete spaces where categorical encoding methods, such as
one-hot encoding, can be used. However, in continuous domains
like R, these methods become impractical, requiring models
to develop fine-grained differentiation abilities. In this work,
we investigate the capacity of neural networks to learn an
order relation in a continuous setting. We evaluate CNN and
Transformer architectures and show that high performance can
be achieved by employing an iterative learning strategy over
progressively harder to sort spaces.

Index Terms—artificial intelligence, sequence processing, sort-
ing, accuracy, learning

I. INTRODUCTION

The ability of artificial intelligence to capture similarities
and differences within elements of a sequence is a fundamental
challenge in many areas of information processing. Major
applications include anomaly detection in time series [1], se-
quence alignment in bio-informatics [2], and weather forecast-
ing [3]. This work on determining order relationships through
learning is also relevant to AI-driven sensor modelling for
radar signal processing. Accurately reproducing the interaction
processes requires the model to correctly discern these pulses
according to an understanding of their underlying interaction
laws, which is crucial for identifying characteristic patterns
in radar signatures. In recent years, rapid advancements in
sequence processing, particularly with the rise of generative
language models such as GPT-based architectures [4], have
significantly broadened AI’s application landscape in this field.
However, when the space of elements is continuous rather than
discrete—unlike the human language vocabulary—traditional
encoding techniques such as one-hot encoding become very
difficult to apply. This method, commonly used to represent
categorical data [5], relies on a unique mapping between each
element and a dimension in a vector space. In a continuous
space like R, this would require an infinite number of dimen-
sions, making the approach impractical. As a result, the ability
of models to distinguish between similar values becomes a
critical challenge. To explore this issue, we focus on sorting,
a key problem in mechanistic interpretability [6] due to its

link with comparison and ordering mechanisms. As illustrated
in Figure 1, the sorting problem consists of reordering lists of
elements based on an element-wise score computed according
to an implicit criterion (e.g., the first coordinate of each
element). Hence, the model must understand how this criterion
influences the order and correctly sort elements, even when
their scores are very close.

Historically, optimizing sorting algorithms has been a cen-
tral challenge in computer science, from early classical im-
plementations (quicksort, mergesort) to modern approaches
leveraging parallelism and distributed computing. Today, the
use of AI to accelerate these algorithms is garnering increasing
interest. Tim Kraska et al. proposed a learned database system
known as SageDB [7], which predicts each element’s position
based on prior training on the data, followed by a traditional
sorting algorithm for refinement. This idea was extended by
Xiaoke Zhu et al. [8], who iteratively apply a coarse sorting
step using a learned cumulative distribution function until a
conflict threshold is met, followed by a traditional sorting
algorithm. Another similar approach, Balanced Learned Sort
by Paolo Ferragina et al. [9], classifies elements into buckets
based on learned distribution patterns, allowing for classical
bucket-by-bucket sorting. The common point among these
methods is the use of AI as a pre-sorting tool integrated
into a larger algorithm. In contrast, we aim to focus on a
problem where the order relation is not explicitly defined
but must instead be learned by the model only from data.
Specifically, we seek to train models capable of discovering
and generalizing an implicit ordering relation that emerges
from vectors in Rd, without any prior knowledge of the
underlying structure.

More in line with our approach, Jungtaek Kim et al. [10]
trained a transformer to determine the sorted indices of a
sequence, where elements are multi-digit images. Mateusz
Baginski et al. [11] and Eionar Urdshals et al. [6] simi-
larly explored the sorting capabilities of transformers from
a Mechanistic Interpretability perspective. In their studies,
transformers receive an unordered list and directly predict
the sorted sequence. Again, the element space consisted of
integers, ranging from 1 to 64 in the first article and 1 to 4000
in the second. The latter approach is significantly different

1902ISBN: 978-9-46-459362-4 EUSIPCO 2025



from ours, as it relies on one-hot encoding, which artificially
separates each element and, by extension, each possible value
of the sorting criterion.

To our knowledge, all existing work on sorting either
assumes prior knowledge of the problem, integrating AI into a
larger algorithm, or focuses on sorting elements within a finite
space. In contrast, we aim to address sorting in continuous
spaces, where one-hot encoding is not feasible, introducing
the added challenge of distinguishing closely related values.

Our contributions are as follows: we define a learning
problem focused on order relations to analyse neural networks’
fine-grained discernment capabilities; we propose a loss func-
tion that ensures balanced sequence contributions; we evaluate
CNN [12] and Transformer [13] architectures; and we show
that high performance can be achieved with an iterative learn-
ing strategy on progressively expanding spaces. Our proposed
solution aligns with the principles of Continual Learning and
Curriculum Learning [14], which suggest that mastering a
complex task is more effective through the successive learning
of increasingly complex sub-tasks.

The article is structured into four parts. First, we define
the sorting problem in detail and highlight the challenges of
training AI for this task. Next, we describe our proposed
methods that enable effective AI training and performance.
Then, we introduce the tested architectures. Finally, we present
our results along with the evaluation metrics.

II. THE SORTING PROCEDURE AND ITS CHALLENGES

The ordering relation is defined through a hyper-parameter
vector VS , which can be chosen randomly. For a sequence
of vectors V1, V2, · · · , Vn, the sorting procedure involves
computing a score Si = ⟨Vi, VS⟩ for each vector, where
⟨·, ·⟩ denotes the inner product. This score measures the
alignment or similarity between Vi and the reference vector
VS . The list [(V1, S1), (V2, S2), · · · , (Vn, Sn)] is then sorted
in ascending order based on these scores, resulting in an
ordered sequence of vectors. The permutation σ that sorts the
scores ensures that Sσ(1) < Sσ(2) < · · · < Sσ(n) and so the
ordered sequence is Vσ(1), Vσ(2), · · · , Vσ(n).

In figure 1, we illustrate using a 10-element sequence the
4-step sorting procedure, which can be summarized as follows:

• Input: A sequence of vectors is provided as input

[V1, V2, V3, V4, V5, V6, V7, V8, V9, V10]

• Scoring: For each vector Vi, a score Si is computed

[(V1, S1), (V2, S2), (V3, S3), (V4, S4), · · · , (V10, S10)]

• Sorting: As the scores are sorted as

S3 < S2 < S8 < S4 < S1 < S10 < S7 < S6 < S9 < S5

we sort the list:

[(V3, S3), (V2, S2), (V8, S8), (V4, S4), · · · , (V5, S5)]

• Output: The scores are discarded, and the final output is
the ordered sequence of vectors

[V3, V2, V8, V4, V1, V10, V7, V6, V9, V5]

Fig. 1. Diagram of the sorting mechanism considered.

The challenge for an AI learning to solve this problem lies
in the wide diversity of sequences it must sort. The model
must be capable of handling sequences where the scores
of the elements are very close to one another, as well as
sequences where the scores are widely dispersed. Since the
AI has no prior knowledge of the sorting rule, it can only
infer the procedure by learning from the training data. This
understanding must be particularly precise and nuanced when
dealing with sequences hardly separable, i.e., where the scores
are close relative to the range of possible values they can
take. To support these intuitions, we conducted simulations
of the learning process on datasets of increasing complexity.
The training is performed on windows (defined in Section III)
with a scaling parameter λ ranging from 1 (simple sequences)
to 10−4 (complex sequences).

Figure 2 illustrates the increasing difficulty faced by AI
models in learning to sort sequences as data complexity
grows. We compare the performance of our two architectures:
Transformer and CNN. The solid curves represent the average
performance across all sequences, highlighting the advantage
of the Transformer over the other architectures. Performance
is defined by two metrics: the error metric, which quantifies
the average distance between the predicted sequences and the
correctly sorted sequences (3), and the accuracy metric, which
measures the fraction of elements correctly reordered by the
model on average (6).

We add boxplots of the Transformer’s sequence-wise perfor-
mance distribution for a given λ to highlight its performance
disparities. The CNN exhibits similar disparities, which are
not displayed for clarity.

All architectures encounter similar difficulties when learning
on sequences with lower values of λ, which, in this configu-
ration, is linked to the ratio eq. (4), defined as r = λ/20. This
suggests that the challenge is not specific to any particular
architecture but rather inherent to the problem itself. Beyond

1903



Fig. 2. Error and Prediction Accuracy vs. λ for CNN and Transformer.

r = 10−4, we observe that the model begins to struggle with
sorting certain sequences.

III. METHOD

In this section, we delve into the details of the proposed
learning process. Specifically, we present the error metric that
corresponds to the loss minimized during training eq. (3),
which incorporates a unique weighting scheme, and we explain
our progressive learning strategy, including the definition of
the windows mentioned earlier. The error metric is based on
the Euclidean norm of the difference between a sequence
predicted by the model (Pk) and the ideally sorted sequence
(Tk). First, for two sequences Pk and Tk, each consisting of
n vectors of dimension d, we define the sequence error as:

E(Pk, Tk) =
∥Pk − Tk∥2√

n× d
(1)

The sequence error represents a form of distance between
a predicted sequence and a sorted sequence. To provide
context for this term, we also estimate the sequence error
produced by the most naive approach to reducing it. For a
sequence Tk, the vector P that minimizes E(Rep(P ), Tk),
where Rep(P ) = [P, P, · · · , P ] (a sequence of n repetitions
of P ), is the mean vector T̄k of the sequence Tk. The term
Ek = E(Rep(T̄k), Tk) represents the sequence error achieved
simply by predicting the mean vector. As a normalisation
factor, Ek ensures that, regardless of the mean amplitude of
the vectors in a sequence, all sequences contribute equally to
the total error : The weighted sequence error of the pair of
sequences Pk and Tk is :

err(Pk, Tk) =
E(Pk, Tk)

E(Rep(T̄k), Tk)
(2)

Finally, we sum over batch dimension b to get our custom
loss. It computes the weighted average of distances between
predicted and sorted sequences :

Err(P,T) =

√√√√1

b

b∑
k=1

err(Pk, Tk)2 (3)

The concept of a window is central to our learning strategy.
A window defines a range for the mean ([µmin, µmax]) and

standard deviation ([σmin, σmax]) of the score values across
sequences in a set. Specifically, a window is defined as the
Cartesian product [µmin, µmax] × [σmin, σmax]. Thus, a set
is said to be characterized by the window [µmin, µmax] ×
[σmin, σmax] if its sequences are generated such that, the
score distribution within a sequence is defined by parameters
sampled as follows :

• The mean is uniformly drawn from [µmin, µmax].
• The standard deviation is logarithmically drawn

[σmin, σmax].

This approach allows us to control the minimum precision
required to sort the most challenging sequences, which can be
approximated by the ratio

r = σmin/(µmax − µmin) (4)

Our training strategy follows a progressive difficulty in-
crease. Initially, the model is trained on sequences that are
easily separable, meaning their standard deviation is on the
same order of magnitude as the range of score values. At this
stage, the model can correctly sort sequences without fully
grasping the underlying mechanism. As training progresses,
we gradually introduce sequences with decreasing separability,
requiring the model to refine its sorting process. This transfer
learning approach enables the model to progressively master
the task and successfully sort sequences of varying difficulty,
from easily separable to highly challenging. The training
dataset evolves through a sequence of training windows de-
fined as:

[µmin, µmax]× [λ, σmax]

where λ controls the minimum separability of the sequences
thanks to this link with the ratio eq. (4) : λ = r × (µmax −
µmin). By adjusting λ, we systematically vary the difficulty
of the sequences presented to the model during training.

IV. ARCHITECTURES

We compare the results obtained using two architectures
renowned for their effectiveness in sequence processing: a
Convolutional Neural Network (1.9M parameters) and a Trans-
former network (0.6M parameters). For the CNN, we adopt
the architecture proposed by Kalchbrenner et al. [15] with
10 layers and 10 neurons per layer. While this architecture
is effective for sequence tasks, our primary focus is on the
Transformer, which has demonstrated superior performance in
handling complex dependencies.

For the Transformer, we use the encoder from Vaswani
et al. [13]. As shown in Figure 3, it consists of 10 layers
with 4-head self-attention in a 128-dimensional space. This
mechanism captures dependencies between elements while po-
sitional encodings preserve order—both essential for sorting.
By weighting input features, the model focuses on relevant
parts of the sequence, making it well-suited to our task

By comparing these architectures, we aim to confirm that
the learning difficulty is not linked to a specific architecture
but is a fundamental challenge of the sorting problem. The

1904



Fig. 3. Our Transformer encoder architecture has 10 layers, each featuring
4-head self-attention and a feed-forward network. Positional encodings are
added to input embeddings.

Transformer, with its ability to model complex dependencies,
is expected to outperform the CNN.

V. RESULTS

To evaluate the performance of these architectures, we use
two complementary metrics:

• The first metric is the training loss, referred as the error
eq. (3).

• The second metric evaluates the proportion of vectors
correctly repositioned by the model and is referred as
the accuracy. Specifically, it measures how often the pre-
dicted sequence matches the sorted sequence in terms of
vector positions. For each vector in a predicted sequence,
we check if the closest vector in the sorted sequence
(based on Euclidean distance) is in the same position.
To formalize this, in a set of b sequences composed of
n elements, for a given pair of predicted sequence Pk

and sorted sequence Tk, we denote their ith elements as
Pk,i and Tk,i. The accuracy for this pair of sequences is
computed as:

acc(Pk,Tk) =
1

n

n∑
i=1

1{Tk,i}(argmin
Tk,j∈Tk

(∥Pk,i −Tk,j∥2))

(5)
where 1 is the indicator function. Finally, the overall
accuracy over a batch of b sequences is computed as the
average of the accuracy across all pairs (Pk,Tk):

Acc(P,T) =
1

b

b∑
k=1

acc(Pk,Tk) (6)

To visualize our results, we use a 40 × 40 pixel image repre-
sentation. Each pixel corresponds to a specific combination of
mean (µ) and standard deviation (σ) values, which characterize
the distribution of scores within a sequence. The pixel’s color
or intensity reflects the AI’s performance on sequences with
those specific parameters. This representation allows us to
observe how the AI’s ability to sort varies with µ and σ, which
directly influence the complexity of the task.

Fig. 4. The reference model is trained directly on the full dataset, using a
single training step without any progressive learning. The data is sampled from
the window [µmin, µmax]× [σmin, σmax] = [−10, 10]× [0.0001, 5] (r =
5 · 10−6 as defined in eq. (4)), containing 500,000 sequences. Training uses
an RMSE loss normalized by the output standard deviation and is performed
over 1600 iterations. The left panel shows the error, and the right panel shows
the accuracy of the model across the map of operating points.

For each operating point (µ,σ)—or each pixel—we draw
a sequence with the corresponding score distribution and
evaluate two metrics:

• The weighted sequence error, computed using eq. (1),
measures the deviation of the model’s predictions from
the ideally sorted sequence, weighted by the natural
difficulty of each sequence. This value ranges from 0
(perfect learning) to 1 (no learning).

• The sequence accuracy, computed using eq. (5), quantifies
the model’s ability to correctly reorder the sequence. This
value ranges from 0.1 (poor abilities) to 1 (excellent
abilities).

The image highlights the model’s failure to learn how
to correctly sort all sequences. Specifically, sequences with
closely spaced scores within the same sequence (located on
the left side of each image), which we considered particularly
challenging due to the required precision, are almost never
sorted correctly. Additionally, in the error map (on the left), we
observe a region where the error is low despite the precision
also being low. This region corresponds to sequences that
naturally have a low error using eq. 1, and this artifact appears
due to the absence of the normalization we introduce in eq.
(2).

We adopt the following training strategy: the model is
trained successively on 9 datasets controlled by windows of
the form

[µmin, µmax]× [σmin, σmax] = [−10, 10]× [λ, 5]

1905



as described in Section III. Each window contains 500,000
sequences, and training is performed for 170 iterations per
window. Here, λ is the parameter controlling the mini-
mum separability of the sequences, and it takes the values
[1, 3.10−1, 1.10−1, 3.10−2, 1.10−2, 3.10−3, 1.10−3,
3.10−4, 1.10−4].

The results, illustrated in Figure 5, demonstrate that the
model initially performs well on a restricted domain but
gradually extends its capabilities to the entire domain as
the windows (limited by the black line) are progressively
introduced during training. These results stand in stark contrast
to the reference model, whose good performance, shown in
Figure 4, could not extend across all operating points (µ,σ),
especially for challenging points.

Fig. 5. Transformer performance at different stages of training: after the 2nd,
4th, 8th, and 10th training windows. Error is displayed in the top row, and
accuracy in the bottom row.

We present our final results in Figure 6: The fully trained
network is evaluated over the same set of windows used in
Figure 2. For Transformer, we report the average performance
across each window and provide boxplots to highlight the
disparity in performance. The progressive training strategy
facilitates gradual learning and significantly enhances final
performance, particularly for the Transformer, which outper-
forms the CNN. While CNN results remain mitigate, they still
surpass those obtained without our custom loss function and
training strategy.

Fig. 6. Error and Accuracy Across Windows with Performance Disparity

VI. CONCLUSION

This finding underscores the general abilities for Transform-
ers to deal with sequences, and highlight the potential of the
approch to address challenging learning tasks across diverse
architectures.

We proposed a loss function incorporating sequence weight-
ing, along with a progressive learning strategy, which enabled
us to maintain consistent AI performance across all sequence
types. This approach also led to higher accuracy compared
to conventional loss functions and standard training methods,
as shown in Figures 6 and 2. Quantitatively, we improved
the precision limit from r = 10−4 to r = 5.10−6. However,
while our method significantly benefits the Transformer, the
improvements observed for CNNs remain more modest. This
discrepancy could be due to a suboptimal capacity of the
CNN architecture used in our experiments. Since convolutions
operate locally, capturing order dependencies may require
deeper networks or larger kernel sizes to adequately model
the sorting task. Further investigation would be needed to
determine whether increasing the CNN’s depth or receptive
field could fill the performance gap with the Transformer.

REFERENCES

[1] Susto, et al. ”Machine Learning for Predictive Maintenance: A Multiple
Classifier Approach” in *Industrial Informatics, IEEE Transactions on*
vol. 11, pp. 812–820, 2015.

[2] Katoh, et al. ”MAFFT Multiple Sequence Alignment Software Ver-
sion 7: Improvements in Performance and Usability” in *Molecu-
lar Biology and Evolution*, vol. 30, pp. 772-–780, 2013. Available:
https://doi.org/10.1093/molbev/mst010

[3] Harilal, et al. ”STint: Self-supervised Temporal Interpolation for
Geospatial Data,” in * arXiv:2309.00059*, 2023. [Online]. Available:
https://arxiv.org/abs/2309.00059.

[4] Radford, et al. ”Improving Language Understanding by Generative Pre-
Training”, OpenAI, 2018. [Online].

[5] Goodfellow, et al. *Deep Learning*. MIT Press, 2016.
[6] Urdshals, et al. ”Structure Development in List-Sorting

Transformers,” in * arXiv:2501.18666*, 2025. [Online]. Available:
https://arxiv.org/abs/2501.18666.

[7] Kraska, et al. ”The Case for Learned Index Structures,” in *SIGMOD
’18: Proceedings of the 2018 International Conference on Management
of Data*, 2018, pp. 489–504.

[8] Zhu, et al. ”Deep Learning Service for Efficient Data Distribution
Aware Sorting,” in *2024 IEEE International Conference on Big Data
(BigData)*, 2024, pp. 1508–1515.

[9] Ferragina, et al. ”Balanced Learned Sort: A New Learned
Model for Fast and Balanced Item Bucketing,” Available:
https://arxiv.org/html/2407.00734v1, 2024.

[10] Kim, et al. ”Generalized Neural Sorting Networks with Error-Free
Differentiable Swap Functions,” in *The Twelfth International Con-
ference on Learning Representations*, 2024 [Online]. Available:
https://openreview.net/forum?id=RLSWbk9kPw.

[11] Bagiński, ”One Attention Head Is All You Need
for Sorting Fixed-Length Lists,” 2023. Available:
https://www.apartresearch.com/project/one-attention-head-is-all-you-
need-for-sorting-fixed-length-lists.

[12] Albawi, et al. ”Understanding of a Convolutional Neural Network,”
in *2017 International Conference on Engineering and Technology
(ICET)*, 2017, pp. 1–6.

[13] Vaswani, et al. ”Attention Is All You Need,” in *Advances in Neural
Information Processing Systems (NeurIPS)*, 2017, pp. 5998–6008.

[14] Wang, et al. ”A Comprehensive Survey of Continual Learning: Theory,
Method and Application,” in *IEEE Transactions on Pattern Analysis
and Machine Intelligence*, vol. 46, no. 8, pp. 5362-5383, 2024.

[15] Kalchbrenner, et al. ”Neural Machine Translation in Linear
Time,” in *arXiv preprint arXiv:1610.10099*, 2017. Available:
https://arxiv.org/abs/1610.10099.

1906


