
Graph Transfer Learning-Based Attack Detection in
Cyber-Physical Water Distribution Systems

Md Rakibul Ahasan∗, Faaiz Joad∗, Rachad Atat†, Coleman Thompson∗, Erchin Serpedin‡,
and Abdulrahman Takiddin∗

∗Department of Electrical and Computer Engineering, Florida State University, Tallahassee, FL, USA
†Computer Science and Mathematics Department, Lebanese American University, Beirut, Lebanon

‡Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA

Abstract—Water distribution systems (WDSs) are critical in-
frastructures that rely on digital monitoring and control through
a cyber layer, which makes them vulnerable to cybersecurity
threats. Cyberattacks, such as denial of service and replay attacks,
can manipulate sensor readings and disrupt normal operations,
leading to system failures. Machine learning-based solutions,
including graph neural networks (GNNs), have been adopted to
detect cyberattacks in WDSs. However, GNNs are computationally
expensive to train due to the large size of the input graphs. In this
paper, we propose a transfer learning (TL) technique based on a
spatio-temporal graph transformer (STGT) model (TL-STGT) for
attack detection that significantly reduces training time for larger
WDS graphs by 66% − 89% compared to benchmark models.
The proposed TL-STGT model improves cyberattack detection
performance by up to 57%, 45%, and 20% in F1-score compared
to shallow, deep, and graph-based models, respectively.

Index Terms—Cyberattacks, graph neural network, machine
learning, transfer learning, transformer, water distribution sys-
tems.

I. INTRODUCTION

Water distribution systems (WDSs) are critical infrastruc-
tures that ensure clean water availability [1]. Supervisory
control and data acquisition (SCADA) systems monitor WDSs
by collecting real-time data from pressure sensors, flow meters,
and valves [2]. However, digitization introduces cybersecurity
risks, including denial of service (DoS) and replay attacks,
which manipulate sensor data and disrupt communications [3].
Such attacks lead to incorrect control decisions, causing over-
flows, inefficiencies, or failures. WDSs, as cyber-physical sys-
tems [4], depend on continuous sensor data exchange, making
communication crucial for functionality and security. In 2021,
a hacker remotely accessed a water treatment plant control
system in Florida, USA and manipulated the sodium hydroxide
to toxic levels [5]. Hence, the complexity and reliance of WDSs
on digital communication create vulnerabilities, reflecting the
need for robust attack detectors.

A. Related Works

In the context of WDS, various machine learning approaches
have been proposed for cyberattack detection, including shal-
low, deep, and graph-based techniques as follows.

Shallow models like light gradient-boosting machine
(LGBM), linear discriminant analysis, and support vector ma-
chine (SVM) achieved relatively low F1-scores of 10%, 57%,
and 63%, respectively [6], [7]. Deep learning models outper-
formed shallow ones. For instance, a deep autoencoder (AE)

offered an F1-score of 72% [7]. Deep recurrent models like,
gated recurrent unit (GRU), long short term memory (LSTM),
and basic recurrent neural network yielded F1-scores of 60%,
72%, and 77%, respectively, against the battle of the attack
detection algorithms (BATADAL) dataset [8].

Both shallow and deep learning models struggle to cap-
ture the complex patterns and spatial aspects necessary for
effective detection of cyberattacks, resulting in sub-optimal
performance. Therefore, graph neural network (GNN)-based
detectors have emerged as a promising alternative. For ex-
ample, temporal graph convolutional network (TGCN) and
graph deviation network-based approaches achieved F1-scores
of 75% and 81%, respectively [9] [10]. Despite their superior
performance, GNNs face high computational complexity in
large-scale systems [11].

Spatio-temporal features combine spatial information (i.e.,
system physical layout and connectivity) with temporal data
(i.e., sensor readings over time). Shallow models struggle with
spatio-temporal complexity, while deep models demand high
computational resources. GNNs capture spatial relationships,
but become computationally expensive for large WDSs [12].
To address such challenges, enhancing efficiency is crucial,
which will also improve scalability [13], enabling deployment
on larger graphs without performance trade-offs.

B. Contributions

To address the aforementioned limitations, we propose a
transfer learning (TL)-based spatio-temporal graph transformer
(STGT) called (TL-STGT) for attack detection. While en-
hancing cyberattack detection performance, our proposed TL-
STGT-based approach efficiently models spatio-temporal pat-
terns while reducing computational complexity by transferring
learned knowledge from smaller to larger graph representa-
tions, achieving faster training without compromising detection
performance. Our key contributions include:

• We propose a TL-based STGT (TL-STGT) model for
cyberattack detection in WDSs, achieving F1-score im-
provements of 35 − 57%, 29 − 45%, and 5 − 20% over
shallow, deep, and graph-based benchmarks.

• We introduce a TL approach leveraging betweenness
centrality to abstract key nodes. This method accelerates
training across various WDS graph representation scales,

1912ISBN: 978-9-46-459362-4 EUSIPCO 2025

reducing training time by 66%−89% compared to bench-
marks.

• We exhibit scalability in the proposed TL-STGT model as
its F1-score improves by 15−25% when detecting attacks
in larger WDSs compared to smaller ones.

The paper is structured as follows. Section II covers the data
preparation. Section III describes the STGT block and Section
IV details the TL approach of the proposed TL-STGT model.
Section V presents our results. Section VI concludes the paper.

II. DATA PREPARATION

For realistic results, we create a spatio-temporal WDS
dataset with benign and attack samples. Specifically, we
adopt the C-Town WDS benchmark dataset [14] from
BATADAL [15], which is widely used for evaluating cyber-
attack detection in WDSs. Our dataset consists of spatial and
temporal aspects as follows.

A. Spatial Aspect

The spatial aspects represents nodes (i.e., WDS components
including tanks, pumps, valves, and junctions) and edges (i.e.,
connectivity of nodes via water pipes). We model our WDS
using three graphs, with 10, 20, and 31 nodes. Next, we discuss
the node selection and graph modeling processes.

1) Node Selection: As part of our TL approach for cyber-
attack detection in WDS (see Section IV), we start with the
original BATADAL 31-node WDS as our initial system with
the largest size. Then, we apply the node selection algorithm to
reduce the input graph size and mitigate the computational cost
of training large graphs, where GNNs require O(N2) matrix
multiplications [16]. Graph reduction is based on betweenness
centrality, which quantifies node importance by measuring the
number of shortest paths passing through a node [17]. The
betweenness centrality CB(v) of node v is given by:

CB(v) =
∑

i ̸=v ̸=j

ηij(v)

ηij
(1)

where ηij(v) is the number of shortest paths from node i
to j passing through v, and ηij is the total shortest paths
between nodes i and j. Using CB(v), we construct small (10-
node) and medium (20-node) graphs systems out of initial
large (31-node) graph. Then, for training, we first train the
model on the constructed 10-node graph, save the learned
weights, and then fine-tune models on larger graphs, enabling
faster training without compromising detection performance.
These variations assess computational efficiency and detection
performance as graph complexity increases. Fig. 1 illustrates
the reduced graphs where T, PU, V, and J denote tanks, pumps,
valves, and junctions, respectively.

2) WDS Graph Modeling: We model each of the 10, 20,
and 31-node systems as a graph G = (V, E), where nodes V
represent WDS components and edges E represent connection
pipes. The dataset is structured as a time-series matrix X ∈
R|T |×|V|, where Xt,i denotes a reading at node i at time t,
classified as either benign Xb

t,i or malicious Xm
t,i. The spatial

structure is captured by the adjacency matrix A ∈ R|V|×|V|,

Undirected Directed

Node Count:

Graph Data:

0-index 1-index Custom Labels

10

T1 PU8
T1 J269
T1 J302
T1 J317
PU1 J269
PU8 J302
V2 J317
V2 J14
J269 J317
J300 J289
J300 J14
J289 J14

T1T1PU8PU8

J269J269

J302J302

J317J317

PU1PU1

V2V2J14J14J300J300

J289J289

1

1
2
3
4
5
6
7
8
9

10
11
12
13

   SIGN IN 

9/27/24, 11:35 PM Graph Editor

https://csacademy.com/app/graph_editor/ 1/1

Undirected Directed

Node Count:

Graph Data:

Force Draw Edit Dele

Edit mode
This mode allows you to edit node
edges' costs.

Ways you can interact with the gr

Click on a node label to cha
you can start typing in orde
label. Click anywhere or pre
finish edi�ng.
Click on an edge to change
you can start typing in orde
cost. Click anywhere or pre
finish edi�ng.

Download as PNG Generate

0-index 1-index Custom Labels

20

PU4 J256
PU5 J300
PU5 J256
PU6 J289
PU6 J415
PU7 J289
PU7 J415
PU8 J302
PU8 J306
V2 J317
V2 J14
J269 J317
J300 J289
J300 J14
J289 J14
J302 J422

T1T1

PU8PU8 J269J269J302J302J317J317

PU1PU1

V2V2

J14J14

J300J300

J289J289

T7T7

J307J307

PU4PU4
J256J256

PU5PU5
PU6PU6

J415J415
PU7PU7

J306J306 J422J422

1

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

   SIGN IN 

9/27/24, 11:43 PM Graph Editor

https://csacademy.com/app/graph_editor/ 1/1

9/5/24, 5:11 PMGraph Editor

Page 1 of 2https://csacademy.com/app/graph_editor/

Undirected Directed

Node Count:

Graph Data:

Force

Draw mode
This mode allows you to draw new nodes and/or
edges.

Ways you can interact with the graph:

Clicking anywhere on the graph canvas
creates a new node.
Clicking on a node starts the drawing
process of a new edge.
To cancel the new edge, click anywhere
on the canvas.
To finish drawing the edge, click on the
desired neighbour.

Download as PNG

0-index 1-index Custom Labels

32

T1 PU8
T1 J269
T1 J302
T1 J317
T2 J289
T2 J14
T3 J256
T4 J415
T5 J306
T6 T7
T6 J307
T7 J307
PU1 PU2
PU1 J280
PU1 J269
PU2 PU3
PU2 J280

T1T1
J317J317

V2V2 J14J14

J300J300

J289J289PU5PU5

PU7PU7 PU8PU8J269J269

J302J302
T2T2

T3T3

J256J256

T4T4 J415J415

T5T5

J306J306

T6T6T7T7

J307J307PU1PU1
PU2PU2

J280J280

PU3PU3

PU4PU4
PU6PU6

PU9PU9

PU10PU10

J422J422

PU11PU11
J4220J4220

1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

   SIGN IN 

(b)(a)

(c)

Fig. 1. Reduced C-Town WDS graphs with (a) 10, (b) 20, and (c) 31 nodes.

where Aij = 1 if nodes i and j are directly connected, and 0
otherwise.

B. Temporal Aspect

The temporal aspect represents sensor readings (i.e., tank
water level, flow rates, and pressure level) from the three
WDSs. We generate such readings using EpanetCPA [18]
with 1, 400 hours of data evenly split between normal and
attack operations, including replay, DoS, and data manipulation
attacks for each of the three WDSs. The datasets are split into
training, validation, and testing sets using an 80%−10%−10%
ratio with equal number of samples per class in each set.

1) Benign Samples: During normal operation, sensor read-
ings are recorded over time without intervention. Such readings
represent benign samples denoted as Xb ∈ X, where Xb

t,i

represents a benign sample at time step t and node i.
2) Attack Samples: A malicious sample Xm

t,i is generated by
modifying benign samples using attack functions as follows.

a) Replay Attack: This attack replaces a current reading
Xb

t,i with a past value from a previous time step t−∆t, i.e.,

Xm
t,i = Xb

t−∆t,i, (2)

where ∆t is the time difference between the current and
replayed time step.

b) DoS Attack: This attack disrupts communication be-
tween sensors and SCADA, freezing updates. The last valid
reading before disruption freezes during the attack, i.e.,

Xm
t,i = Xb

t−1,i, (3)

where t− 1 is the last valid time step before the attack.
c) Data Manipulation Attack: This attack alters sensor

readings via a perturbation value of −5 ≤ δt,i ≤ 5 with 0.2
increments, selected based on experimental tuning, resulting in

Xm
t,i = Xb

t,i + δt,i. (4)

III. MODEL ARCHITECTURE

The STGT block of the proposed TL-STGT model integrates
TGCNs, GRUs, and transformers to capture spatio-temporal
dependencies effectively. A high-level overview is shown in
Fig. 2. Next, we present the STGT components.

1913

Recurrent Graph

Convolution

G
ra

p
h

 M
a
x
 P

o
o
li

n
g

M
u

lt
i-

H
e
a
d

 A
tt

en
ti

o
n

A
d

d
 &

 N
o
rm

Dense

.
.

.
.

M
u

lt
i-

H
e
a
d

 A
tt

en
ti

o
n

A
d

d
 &

 N
o
rm

Dense

.
.

.
.

Output

.
.

.
.

Transformer

Original Graph

B
et

w
ee

n
n

es
s

C
en

tr
a
li

ty

G
ra

p
h

 R
ed

u
ct

io
n

.
.

.
.

Model 1

Model 2

Model k

.
.

.
.

Weight TransferReduced Graphs

Input Graph

Figure 3 Figure 2

Fig. 2. Architecture of the proposed STGT model.

A. Graph Convolution

To capture spatial aspects, we apply graph convolution on
graph G for node i as:

hl+1
i = tanh

 ∑
j∈N (i)

1√
didj

AijW
lghl

j

 , (5)

where hl
i is the hidden state at layer l, N (i) denotes neighbors,

Aij is the adjacency matrix, di, dj are node degrees, and Wlg

is a trainable weight matrix.

B. Gated Recurrent Unit

We add a GRU layer as it models temporal dependencies
more efficiently compared to LSTMs [19]. The output of the
graph convolution hl+1

i is then passed to the GRU layer where:

rt = σ(Wr · [ht−1, xt]) (6)
ut = σ(Wu · [ht−1, xt]) (7)
ct = tanh(Wc · [rt ∗ ht−1, xt]) (8)
ht = ut ∗ ht−1 + (1− ut) ∗ ct (9)

where rt, ut, and ct are the reset, update, and candidate
gates, respectively. Wr, Wu, and Wc are the trainable weight
matrices. xt and ht denote the input features and hidden state,
respectively, at time t. ∗ denote the Hadamard multiplication.

C. Transformer

After the GRU step, we obtain the hidden states ht that
contain the spatio-temporal features. We then use transformers
to capture the longer range dependencies that may not be
captured just from the graph convolution or GRU layers
alone [20]. The hidden state ht from the GRU output is then
passed through a global max pooling layer and a dense layer
to create a fixed sized input into the transformer. The core of
the transformer is multi-head attention, defined as follows:

Attention(Q,P, F) = softmax

QP ⊺√
d̂p

F, (10)

MultiHead(Q,P, F) = Concat(head1, . . . , headn)Wo, (11)

where Q,P, and F are the query, key, and value matricies
respectively. d̂p is the key vector dimension, and Wo is the
output weight matrix. Multi-head attention allows the model to
focus on different parts of the input sequence simultaneously
to learn complex patterns and capture relationships efficiently
through parallel attention mechanisms [21]. The output is then
passed through a final dense layer, representing the recon-
structed vector of the next time step.

IV. TRANSFER LEARNING

We propose a progressive TL approach (illustrated in Fig. 3)
that learns spatio-temporal features on the smallest 10-node
graph, leveraging its trained weights for subsequent larger
graphs, ensuring faster convergence and improved efficiency.

Recurrent Graph

Convolution

G
ra

p
h

 M
a

x
 P

o
o

li
n

g

M
u

lt
i-

H
e
a
d

 A
tt

en
ti

o
n

A
d

d
 &

 N
o

rm

Dense

.
.

.
.

M
u

lt
i-

H
e
a
d

 A
tt

en
ti

o
n

A
d

d
 &

 N
o

rm

Dense

.
.

.
.

Output

.
.

.
.

Transformer

Original Graph

B
et

w
ee

n
n

es
s

C
en

tr
a
li

ty

G
ra

p
h

 R
ed

u
ct

io
n

.
.

.
.

Model 1

Model 2

Model k

.
.

.
.

Weight TransferReduced Graphs

Input Graph

Figure 3 Figure 2

Fig. 3. Overview of the proposed TL approach.

The training of the proposed model is carried out in a
supervised manner using the mean squared error loss function:

L(Y, Ŷ) =
1

Z

∑
z

∥∥∥Y [z]− Ŷ [z]
∥∥∥2 , (12)

where Z is the total number of batches. Y and Ŷ correspond
to the actual and predicted sequences, respectively. Training is
performed end-to-end, allowing the model to learn the temporal
and spatial dependencies directly from the input sequences.
The model training is based on the Adam optimizer. The
training dataset is divided into mini-batches, which are fed
into the model over several epochs to minimize the loss
function. The input data consists of the time-series dataset
X ∈ RZ×S×|V| where S is the batch size, and |V| is the number
of nodes. The model also has the spatial representation as the
adjacency matrix A ∈ R|V|×|V|. The model inference output is
a prediction of all node features for a given timestamp. After
training, we save the trained weights and use them to train
another model with the next largest graph input. We continue
this iterative process to train models for the larger graphs.

As shown in Algorithm 1, GGG = {G1,G2, . . . ,Gk} represents
the set of all graphs where Gk denotes the last graph. XXX =
{XG1

,XG2
, . . . ,XGk

} represents the training data where XGk

denotes the training data of the last graph Gk. W0 denotes the
initial random model weights, WGg denotes the set of model
parameters (weights) after training on a graph Gg with corre-
sponding training data XGg

. The model is trained on the input
data XGg

associated with graph Gg , while updating the parame-
ters through optimizing WGg

= argminWGg−1
L(XG ,WGg−1

),
which is the loss function that quantifies the reconstruction
error. After training, the optimized parameters WGg

are saved
and and used to initialize the parameters for the next model,
which is on the next largest graph Gg+1 with its correspond-
ing input data XGg+1

. This process is repeated iteratively:
WGg+1

← WGg
. Thus, for each subsequent graph Gg+1, the

model is initialized with the weights WGg
from the previously

trained model on graph Gg , and the training continues.

1914

Algorithm 1: TL for Progressive Graph Sizes

1 Input: GGG and XXX with W0 random initial weights
2 Output: Final model MGk

with parameters WGk

3 for each graph Gg from G1 to Gk do
4 Initialize the model MGg

with parameters
WGg =W0 if g = 1, otherwise WGg =WGg−1 ;

5 Compute ŶGg
from XGg

6 Calculate the loss: L(YGg
, ŶGg

)
7 Update parameters WGg using the Adam optimizer
8 if g < k then
9 Transfer the learned parameters WGg

to the
next model MGg+1

by setting: WGg+1
←WGg

;
10 Freeze the weights in earlier layers to preserve

the learned features:
∂W (frozen)

Gg+1

∂t = 0;
11 end
12 end
13 return Trained model MGk

with parameters WGk

V. EXPERIMENTAL RESULTS

We herein present the experimental results in terms of attack
detection and model efficiency.

A. Model Evaluation

The deep and proposed models are evaluated by comparing
its inferences Ŷ with ground truth labels Y . We compute
the Mahalanobis distance for each error vector e in error
matrix E = Y − Ŷ . The Mahalanobis distance is given by:
Ξ =

√
(e− µ)Tφ−1(e− µ) where µ is the global mean

error, φ is the covariance matrix of E . This distance metric
helps identify outliers, which indicate attacks. By examining
the squared Mahalanobis distance over consecutive batches
of predictions, we calculate the mean squared Mahalanobis
distance for each batch: Ξ2 = 1

S

∑S
i=1 ξ

2
i , where S is the

batch size and ξ is an error vector of Ξ. If the mean squared
distance exceeds a predefined threshold, the batch is flagged
as an attack. The threshold is determined based on the model’s
performance using the validation set. Detection performance is
then quantified using F1-score (F1 = 2·TP

2·TP+FP+FN), accuracy
(ACC = TP+TN

TP+TN+FP+FN), and detection rate (DR = TP
TP+FN),

where TP, TN, FP, and FN denote true positive, true negative,
false positive, and false negative samples, respectively. We also
measure model complexity in terms of the time (in seconds)
taken to train the model.

B. Model Hyperparameters

We compare the performance of the proposed models to
benchmarks. The hyperparameters of all models are tuned
using sequential grid-search [22] with the following outcomes.

1) Shallow Models: SVM has gamma and regularization
values of 0.07 and 10, respectively. Random forest (RF) utilizes
10 estimators with entropy criterion. LGBM employs a learning
rate of 0.5, max depth of 2, and 100 estimators.

TABLE I
DETECTION PERFORMANCE ON CYBERATTACKS (%).

Model Metric Input Graph Size (Number of Nodes)
10-nodes 20-nodes 31-nodes

SVM
F1 6.1 13.2 26.2

ACC 80.7 78.4 77.7
DR 3.2 9.3 20.1

RF
F1 17.5 22.7 28.9

ACC 82.4 80.1 76.1
DR 9.5 12.4 30.1

LGBM
F1 19.8 20.1 22.3

ACC 82.5 81.3 81.9
DR 11.1 11.3 13.3

FFNN
F1 20.9 24.1 36.1

ACC 78.6 80.6 83.3
DR 14.5 22.7 24.1

LSTM
F1 26.0 27.5 34.5

ACC 77.0 70.3 64.7
DR 20.6 25.9 47.4

AE
F1 21.5 31.4 38.1

ACC 67.2 80.1 83.4
DR 23.1 24.3 26.1

TGCN
F1 49.6 59.3 59.8

ACC 79.3 79.6 80.4
DR 51.8 53.4 54.8

Proposed
STGT

F1 52.3 59.4 76.3
ACC 81.5 83.7 84.8
DR 54.2 55.6 74.7

Proposed
TL-STGT

F1 54.8 65.1 79.7
ACC 82.6 86.1 87.1
DR 53.6 59.6 76.8

2) Deep Models: Feed forward neural network (FFNN) has
5 layers, 500 neurons, and tanh activation. LSTM has 3 layers,
100 neurons, and tanh activation. AE has 4 layers, and ReLU
activation. All deep models use Adam optimizer.

3) Graph Models: TGCN has 3 layers, 64 hidden units,
0.001 learning rate, and Adam optimizer. The proposed models
use 4 layers, 64 GRU hidden units, 8 transformer heads, 128
dense layer neurons, ReLU activation, 0.001 learning rate, and
Adam optimizer.

C. Simulation Results

This section presents the simulation results in terms of attack
detection performance and efficiency (i.e., training time).

1) Attack Detection Performance: Table I presents the at-
tack detection performance of the benchmark and proposed
models. The following overall observation are made. First,
the deep benchmark models outperform shallow ones by
1.1−19.9% in F1-score due to their ability to capture complex
patterns that shallow models might miss. Second, the graph
benchmark model (TGCN) outperforms shallow and deep ones
by 29.8 − 46.1% and 21.7 − 35.2% in F1-score, respectively,
due to its ability to capture spatial aspects of the data. Third,
the proposed STGT model outperforms shallow, deep, and
graph benchmark models by 32.5% − 54%, 26.3% − 41.8%,
and 0.1 − 16.5% in F1-score, respectively, due to its ability
to capture spatio-temporal aspects of the data with longer
range dependencies as it implements a Transformer. Fourth, the
proposed TL-STGT model outperforms benchmark shallow,
deep, and graph models by 35%−57.4%, 28.8%−45.2%, and
5.2 − 19.9% in F1-score, respectively, offering enhanced F1-
score by 2.5−5.7% compared to the proposed STGT. Besides
capturing spatio-temporal aspects, the superior performance of
the TL-STGT model is due to efficiently capturing dependen-

1915

FFNN LSTM AE TGCN
Proposed STGT

Models

0

100

200

300

400

500
Tr

ai
ni

ng
 T

im
e

(s
ec

on
ds

)
10-nodes
20-nodes
31-nodes

Proposed TL-STGT

Fig. 4. Training time with early stopping (seconds).

cies in graph-based structures using its TL ability that transfers
weights from smaller graphs to bigger ones while offering
enhanced computational complexity as described next.

2) Proposed Model Efficiency and Scalability: Figure 4
illustrates the training efficiency of the benchmark models
compared to the proposed TL-STGT approach in terms of
training time (in seconds). For the 10-node graph, the proposed
TL-STGT model requires a higher training time due to the
initial training phase, during which all features are learned,
which is expected given its graph structure, leading to higher
training time during the first step. However, for the 20-node
and 31-node graphs, the training process leverages the weights
from the previously trained models, significantly reducing the
training time. In general, larger graph structures require more
computations due to the increased number of nodes and edges,
resulting in longer training times. For the proposed TL-STGT
approach, TL substantially reduces computation time, saving
between 99.5 and 401.6 seconds on the larger graphs. This
represents a reduction of 65.5 − 88.5% in training time com-
pared to benchmark models. The proposed model’s improved
efficiency is attributed to TL, where several layers are frozen
and retain their pre-trained weights from smaller models. Con-
sequently, the model only needs to learn new weights for the
graph convolution and GRU steps, reducing the computational
burden and enabling faster training on larger graphs. As a
result, the proposed TL-STGT offers high scalability with
improved F1-score by 14.6 − 24.9% when detecting attacks
in larger WDSs (31-node graph) compared to smaller ones (20
and 10-node graphs).

VI. CONCLUSIONS

In this paper, we proposed a transfer learning-based tech-
nique (TL-STGT) to detect cyberattacks in WDSs. The pro-
posed TL-STGT model utilizes graph convolution to capture
spatial features from WDS graph representations, while GRU
and transformer blocks are employed to capture long-range
temporal dependencies. TL demonstrates that larger graph
structures can be trained with reduced computational complex-
ity, enhancing efficiency. The proposed model offered improve-
ments over shallow, deep, and graph models by 35 − 57%,
29 − 45%, and 5 − 20%, respectively, against replay, DoS,

and data manipulation attacks. The proposed model reduces
the training time by 66% − 89% compared to benchmark
models, offering high scalability with F1-score improvements
of 15−25% when detecting attacks in larger WDSs compared
to smaller ones. Future work will focus on the detection and
localization of more attack types.

REFERENCES

[1] L. Palma et al., “Contaminations in water distribution systems: a critical
review of detection and response methods,” AQUA—Water Infrastructure,
Ecosys. and Soc., vol. 73, no. 6, pp. 1285–1302, June 2024.

[2] H. H. Addeen et al., “A survey of cyber-physical attacks and detection
methods in smart water distribution systems,” IEEE Access, vol. 9, pp.
99 905–99 921, July 2021.

[3] U. Parajuli and S. Shin, “Identifying failure types in cyber-physical water
distribution networks using machine learning models,” AQUA—Water
Infra., Ecosys. and Soc., vol. 73, no. 3, pp. 504–519, Mar. 2024.

[4] A. Takiddin et al., “Resilience of data-driven cyberattack detection
systems in smart power grids,” in 32nd European Signal Processing Conf.
(EUSIPCO). Lyon, France, 26-30 Aug. 2024, pp. 1992–1996.

[5] Stateline, “Florida Hack Exposes Danger to Water Systems,”
https://tinyurl.com/2emfebs2, [Online: accessed Mar. 2024].

[6] D. T. Ramotsoela et al., “Attack detection in water distribution systems
using machine learning,” Human-centric Computing and Information
Sciences, vol. 9, pp. 1–22, April 2019.

[7] R. Taormina et al., “Deep-learning approach to the detection and lo-
calization of cyber-physical attacks on water distribution systems,” J. of
Water Res. Pln. and Mang., vol. 144, no. 10, Oct. 2018.

[8] T. D. Ramotsoela et al., “Behavioural intrusion detection in water
distribution systems using neural networks,” IEEE Access, vol. 8, pp.
190 403–190 416, Oct. 2020.

[9] M. N. K. Sikder et al., “Deep h2o: Cyber attacks detection in water
distribution systems using deep learning,” J. of Water Process Eng.,
vol. 52, p. 103568, April 2023.

[10] A. Deng and B. Hooi, “Graph neural network-based anomaly detection in
multivariate time series,” in AAAI Conf. on artificial intelligence, vol. 35,
no. 5. Vancouver, Canada, 2–9 Feb. 2021, pp. 4027–4035.

[11] R. Xue et al., “Large-scale graph neural networks: The past and new
frontiers,” in SIGKDD Conf. on Knowledge Discovery and Data Mining.
Long Beach, CA, USA, 06-10 Aug. 2023, pp. 5835 – 5836.

[12] W. Hamilton et al., “Inductive representation learning on large graphs,”
Advances in neural information processing systems, vol. 30, pp. 1025–
1035, Dec. 2017.

[13] A. Takiddin et al., “Generalized graph neural network-based detection
of false data injection attacks in smart grids,” IEEE Trans. on Emerging
Topics in Computational Intelligence, vol. 7, no. 3, pp. 618–630, June
2023.

[14] A. Ostfeld, Salomons et al., “Battle of the water calibration networks,” J.
of Water Res. Pln. and Mang., vol. 138, no. 5, pp. 523–532, Sept. 2012.

[15] R. Taormina et al., “Battle of the attack detection algorithms: Disclosing
cyber attacks on water distribution networks,” J. of Water Res. Pln. and
Mang., vol. 144, no. 8, p. 04018048, Aug. 2018.

[16] J. Zhou et al., “Graph neural networks: A review of methods and
applications,” AI Open, vol. 1, pp. 57–81, Apr. 2020.

[17] R. Saxena et al., “An efficient influence maximization technique based on
betweenness centrality measure and clustering coefficient,” in Conf. on
Comp. and Aut. Eng. Sydney, Australia, 03–05 Mar. 2023, pp. 565–569.

[18] R. Taormina et al., “A toolbox for assessing the impacts of cyber-
physical attacks on water distribution systems,” Environmental modelling
& software, vol. 112, pp. 46–51, Feb. 2019.

[19] A. Takiddin et al., “Robust electricity theft detection against data
poisoning attacks in smart grids,” IEEE Trans. on Smart Grid, vol. 12,
no. 3, pp. 2675–2684, May 2021.

[20] J. Xu et al., “Anomaly transformer: Time series anomaly detection with
association discrepancy,” in Int. Conf. on Learn. Rep. Virtual, 25–29
April 2022.

[21] A. Vaswani et al., “Attention is all you need,” in Conf. on Neural Info.
Proc. Sys. Long Beach, CA, USA, 4 – 9 Dec. 2017.

[22] A. Takiddin et al., “Spatio-temporal graph-based generation and detection
of adversarial false data injection evasion attacks in smart grids,” IEEE
Trans. on Artificial Intelligence, vol. 5, no. 12, pp. 6601–6616, Dec.
2024.

1916

