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Abstract—Deep Reinforcement Learning (DRL) has achieved
remarkable success across various domains, yet its real-world
applicability remains challenging due to training instability, par-
ticularly in complex environments with sparse rewards. Imitation
learning mitigates this issue by leveraging expert demonstrations,
allowing learning in scenarios where standard RL struggles.
Experts are typically humans or teacher agents, often trained
with privileged information (PI)—data available during training
but not at inference. In this work, we extend beyond standard
action replication from teacher to student by also transferring
knowledge of latent representations. First, a privileged teacher is
trained to use ground-truth information to accelerate learning.
Then, a student agent, which lacks access to PI, is trained
to align both its actions and the geometry of its intermediate
representations with those of the teacher—effectively cloning both
decision-making and latent behavior. We evaluate our method
on two robotic manipulation tasks and demonstrate that latent
behavior cloning significantly improves reward performance and
convergence time compared to standard behavior cloning.

I. INTRODUCTION

Deep Reinforcement Learning (DRL) has been established
as an effective learning paradigm, demonstrating great success
in scenarios where direct supervision is unavailable—either
due to the lack of labels, their high cost, or the inability of
humans to provide correct labels in complex environments.
In recent years, DRL has been successfully employed in
various domains, including, but not limited to, game-playing
[5], natural language processing [11], and robotics [9]

Despite its successes, Deep Reinforcement Learning (DRL)
remains challenging to apply in real-world scenarios due to
issues in reward design, exploration, and efficiency. When re-
wards are sparse or delayed, DRL agents struggle to associate
actions with long-term outcomes, making learning slow and
unreliable [14]. Designing effective reward functions to guide
learning is difficult and often results in handcrafted solutions
that do not generalize well across different tasks. Even with
a well-designed reward, complex tasks often require specific
action sequences that agents struggle to discover on their
own. Additionally, DRL algorithms can be unstable, requiring
extensive trial and error to function properly.

To address these challenges, researchers have explored
Imitation Learning (IL) [26] as an alternative to reinforcement
learning, especially in environments where defining a reward
function is difficult or exploration is impractical. IL allows an
agent to learn from expert demonstrations instead of relying

solely on trial and error. By using expert trajectories, IL
reduces the need for manually designed rewards and extensive
environment interactions. A common approach within IL is
Behavior Cloning (BC) [24], which treats imitation as a
supervised learning problem by training a model to map states
to expert actions. While BC is straightforward and effective,
it suffers from covariate shift, where the states encountered by
the student during deployment differ from those in the expert’s
demonstrations.

Various lines of work have emerged to solve this issue,
such as Inverse Reinforcement Learning (IRL) [22], which
involves an apprentice agent that aims to infer the reward func-
tion underlying the observed demonstrations and Interactive
Imitation Learning (IIL) [1], that assumes that the agent has
access to an online expert who can be consulted during training
e.g. to relabel data [21] or provide corrective interventions
[12]. Finally, significant interest has been in merging behavior
cloning and reinforcement learning into a unified framework.
To this end, [4] proposed the Cycle of Learning (CoL), which
employs an actor-critic architecture with a loss function that
combines behavior cloning and one-step Q-learning losses
within an off-policy algorithm, enabling a DRL agent to learn
from human demonstrations.

The expert demonstrator is not limited to a human; it
can also be a neural network that has already mastered the
task. One way to obtain such a teacher is by training it
with privileged information (PI)—ground-truth data that would
normally be unavailable to the agent during deployment [2].
Unlike human demonstrators, who only provide final actions,
a teacher agent grants access to its latent behavior, revealing
the internal processes that lead to its decisions.

In this work, we introduce Latent Behavior Cloning (LBC),
which extends standard behavior cloning by transferring
knowledge not only from the teacher’s actions but also from
its intermediate representations. Our framework enables a
non-privileged student to learn from the hidden layers of a
privileged-trained teacher, leveraging its structured decision-
making process. We validate our approach on two challenging
robotic manipulation tasks. First, we train a teacher using PI,
including ground-truth states and object relationships relevant
to the task. Then, we transfer its knowledge to a student agent
trained only with visual input. Our results show that Latent
Behavior Cloning significantly reduces the performance gap
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between the privileged teacher and the student, showing its
effectiveness in realistic settings.

The rest of the paper is structured as follows. In Section II,
we briefly discuss related works. The proposed method is then
analytically presented in Section III, followed by its evaluation
in Section IV. Finally, Section V concludes the paper.

II. RELATED WORK

a) Behavioral Cloning and Reinforcement Learning:
Combining Behavior Cloning (BC) with Deep Reinforcement
Learning (DRL) naturally addresses the covariate shift prob-
lem and has been explored in both discrete action spaces
[6] and continuous action spaces [8], [20], which are more
commonly encountered in robotic manipulation tasks. DAPG
[20] integrates imitation learning and reinforcement learning
by first pretraining a policy with expert demonstrations using
behavior cloning and then fine-tuning it with policy gradient
updates, improving sample efficiency and performance in
sparse-reward environments. Building on this line of work,
[4] introduces the Cycle of Learning (CoL) framework, which
employs an actor-critic architecture with a loss function that
combines behavior cloning and one-step Q-learning losses
within an off-policy algorithm, along with a pretraining step to
learn from human demonstrations—resulting in faster training
compared to DAPG. This paper builds upon CoL, as it
provides a systematic approach to merging expert supervision
with reinforcement learning.

b) Learning Using Privileged Information: Learning Us-
ing Privileged Information (LUPI) was introduced by Vapnik
and Vashist for support vector machines [25] and has since
been adopted in supervised learning settings [13], [19]. Privi-
leged information (PI) refers to data that is unavailable during
inference but accessible during training. The core idea is to
transfer knowledge from an intelligent teacher, trained with
PI, to a student model that performs inference without access
to PI. This concept aligns well with many DRL scenarios,
where privileged information about the ground-truth state
of the environment may be available during training, while
only partial observations from sensors can be used during
inference. Several studies, such as [2], [15], have applied this
teacher-student framework in DRL, where a teacher agent with
access to privileged information (e.g., higher-quality sensors
or additional modalities) provides guidance to a student agent
that learns without such information.

c) Knowledge Distillation: To facilitate LUPI, knowl-
edge from the privileged teacher agent must be transferred
to the student agent. The process of knowledge distillation,
originally proposed for model compression [7], has been
widely explored in DRL settings to transfer decision-making
knowledge from teacher to student [16], [23]. Probabilistic
Knowledge Transfer (PKT) [17] offers a different approach by
transferring the local geometry of the teacher’s representations
rather than matching exact predictions. This relaxation enables
PKT to be applied across layers of different dimensions or
earlier than the final decision-making layer, both in supervised
[18] and DRL settings [10]. In this work, we apply PKT for

latent behavior cloning in a LUPI scenario, transferring the
underlying geometry of privileged teacher representations to
the student agent.

III. PROPOSED METHOD

A. Preliminaries

We base our algorithm on the Twin Delayed Deep Determin-
istic Policy Gradient (TD3) [3] due to its proven effectiveness
in continuous environments, making it well-suited for robotic
manipulation tasks. However, our framework is not limited
to TD3 and can be seamlessly applied to other actor-critic
methods. TD3 employs a policy network to compute actions
while incorporating techniques to reduce overestimation bias
and improve training stability. TD3 uses a policy network π
for computing actions

π(s | θπ), (1)

and two Q-networks for evaluating state values

Qi(s | θQi
), i ∈ {1, 2}, (2)

For each of these networks, a corresponding target network
is maintained, denoted by

π′(s | θ′π) and Q′
i(s | θ′Qi

), (3)

Actions used to form the Q-learning target are based on
the target policy with added clipped noise on each dimension.
After adding the noise, the target action is clipped to lie within
the valid action range:

a(s′) = clip
(
πt(s

′) + clip(ϵ,−c, c), alow, ahigh
)
, (4)

where ϵ ∼ N (0, σ), πt(s
′) denotes the target policy (equiv-

alent to π′(s′)) and clip(·) is the clipping function. Target
policy smoothing regularizes the algorithm by preventing the
policy network from overfitting to the Q-networks. Both Q-
networks learn from a single target computed as the minimum
of the two target Q-values:

y(r, s′, d) = r + γ(1− d) min
i∈{1,2}

Q′
i

(
s′, a′(s′)

)
. (5)

The policy is updated by maximizing the output of the first
Q-network:

max
θπ

Es∼D

[
QθQ1

(
s, π(s | θπ)

)]
. (6)

Periodically, the target networks are updated using a soft
update:

θ′π ← ρ θ′π + (1− ρ) θπ, (7)

θ′Qi
← ρ θ′Qi

+ (1− ρ) θQi
. (8)

From now on, the policy network (not the target) will be
referred to as the actor, and Q1 will be referred to as the
critic.
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B. Probabilistic Knowledge Transfer

Let us denote the internal representations of the teacher
model as f (T )(s) ∈ RM and those of the student model as
f (S)(s) ∈ RM ′

, with dimensionalities M and M ′, respec-
tively. To simplify the presentation of the proposed method,
we define xi as the internal representation of the models when
presented with the i-th state sampled from the buffer, i.e.,

x
(T )
i = f (T )(si) for the teacher model, and (9)

x
(S)
i = f (S)(si) for the student. (10)

To estimate the conditional probability distributions of both
the teacher and student representations, we employ kernel
density estimation. Specifically, the conditional probability
distribution for the teacher model is computed as:

p
(T )
i|j =

K(x
(T )
i ,x

(T )
j ; 2σ2)∑N

k=1,k ̸=j K(x
(T )
k ,x

(T )
j ; 2σ2)

, (11)

and for the student model as:

p
(S)
i|j =

K(x
(S)
i ,x

(S)
j ; 2σ2)∑N

k=1,k ̸=j K(x
(S)
k ,x

(S)
j ; 2σ2)

. (12)

Here, K(x,y;σ2) denotes a symmetric kernel function with
bandwidth σ. In this study, we use a kernel function based on
the cosine similarity metric, following observations from [17].
This kernel is defined as:

Kcosine(x,y) =
1

2

(
xTy

∥x∥2∥y∥2
+ 1

)
. (13)

To quantify the divergence between the probability distri-
butions of the teacher and student models, PKT employs the
Kullback-Leibler (KL) divergence, given by:

LPKT =
∑
i,j

p
(T )
i|j log

p
(T )
i|j

p
(S)
i|j

 . (14)

By minimizing LPKT , we enforce the geometry of the
representations of the student model to align with that of the
teacher, ensuring that similar representations according to the
teacher remain similar for the student.

C. Latent Behavior Cloning

Following CoL, the student agent learns from a mixture of
expert demonstrations and acquired transitions sampled from
a replay buffer with a specified ratio. Unlike CoL which uses
human demonstrations, here the expert is a teacher agent
trained with PI. This allows the student to learn from new
samples acquired using its policy while staying grounded on
samples acquired using the privileged teacher.

Our proposed behavior cloning loss JBC is a linear com-
bination of losses applied at different layers. An L2 loss,
JBCL2

, is applied to the final action layer, performing stan-
dard behavior cloning. Simultaneously, individual PKT losses,
JBCPKT

, can be applied at multiple intermediate layers of the
architecture.

Algorithm 1 Latent Behavior Cloning Algorithm

1: Input: Privileged trained teacher policy πT , teacher replay
buffer DT , student replay buffer DS and hyperparameters.

2: Initialize: Actor π(s | θπ), critics Qi(s | θQi
), for i ∈

{1, 2}, and target networks π′(s | θ′π), Q′
i(s | θ′Qi

).
3: Collect Teacher Rollouts: Run πT in the environment

and collect rollouts to populate DT .
4: for i = 1, ..., T do
5: Collect Student Rollouts: Run π in the environment

and collect rollouts to populate DS .
6: for j = 1, ..., N do
7: Sample batch B from DS and DT with a fixed ratio

(e.g., 75% from DS , 25% from DT ).
8: Compute Jc and Jπ according to (Eq. 18, Eq. 17).
9: Update critics: θQ ← θQ −∇θQJQ

10: if j mod d = 0 then
11: Update policy:

θπ ← θπ −∇θπJπ

12: Update target networks:

θ′π ← ρ θ′π + (1− ρ) θπ

θ′Qi
← ρ θ′Qi

+ (1− ρ) θQi

13: end if
14: end for
15: end for

The final loss function is given by:

JBC = β1 · JBCL2
+ β2 ·

N∑
i=1

J i
BCPKT

, (15)

where PKT is applied at N intermediate layers indexed by i,
with β1 and β2 being weighting coefficients for L2 and PKT,
respectively.

To mitigate training instabilities that we encountered, we
also adopted the following modifications. Following [4], we
L2 penalize the weights of both actor and critic, resulting in
additional regularization losses Jπ

L2 and Jc
L2 for the actor and

the critic.
We also normalize the actor’s Q-loss (Eq. 6), with a term

a, defined as:

a =
λnorm

1
N

∑
(si,π(si|θπ)) |Q(si, π(s|θπ))|

(16)

where λnorm is a fixed hyperparameter, in order to balance the
influence of the reward scaling. In practice, this normalization
is carried out on a per batch basis, instead of the whole dataset.
The total objective for the actor is defined as

Jπ = JA + λBC · JBC + λL2 · Jπ
L2, (17)

while for the critic as

Jc = JQ + λL2 · Jπ
L2, (18)
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(a) Block lifting env. (b) Door opening env.

Fig. 1: Student agent’s constrained viewpoint. The agent has
access only to a single source visual information, with no
privileged information.

IV. EXPERIMENTAL EVALUATION

A. Robotic Environments
We evaluate the proposed method on two challenging

robotic manipulation tasks provided by the Robosuite envi-
ronment [27]. Specifically, we consider the following tasks:

1) Block Lifting: A robotic arm must lift a randomly placed
cube above a specified height. The agent earns soft rewards
for approaching, grasping, and lifting the cube.

2) Door Opening: A robotic arm must open a randomly
placed door by operating its handle. Soft rewards are given
for reaching and rotating the handle.

Rewards are normalized between 0 and 1, with a 200-step
episode limit unless the maximum reward is achieved. The
privileged teacher receives structured, low-dimensional obser-
vations (e.g., positions, distances, angles, velocities), while the
student relies solely on visual input from a single viewpoint
(Fig. 1), making the task significantly more challenging.

B. Networks Architecture
The teacher model, using a low-dimensional tabular input,

is a three-layer MLP with 64 neurons per layer and ReLU
activations. The actor’s final activation is Tanh, while the critic
output has no activation. The student receives a stack of three
images to capture temporal information. Its architecture con-
sists of two convolutional blocks, each with two convolutional
layers with 3×3 filters with ReLU, followed by max-pooling.
The output is flattened and processed by a three-layer MLP
identical to the teacher’s. In the critic network, the action
vector skips the convolutional layers and is concatenated with
the final dense layers.

C. Configuration
We train all agents using the Adam optimizer with a learning

rate of 10−3 and a batch size of 256. The regularization
weights are set to λL2 = 10−6, and the behavior cloning
weight is set to λBC = 1. The weights for the L2 and PKT
losses are defined as β1 = 1 and β2 = 0.1, respectively,
with PKT applied between the teacher and student at the last
two dense layers before the action layer. The normalization
parameter λnorm for the actor’s Q-loss is fixed at 2.5. Finally,
the sampling ratio between teacher and student samples, drawn
from the corresponding replay buffers DT and DS , is set to
0.75/0.25. We run all our experiments for 10 seeds.

D. Results

In Table I, we present the average achieved rewards for
different methods. The first row shows the performance of the
teacher agent, which is trained with privileged information.
The student agent, restricted to visual information, fails to con-
verge without behavior cloning. However, when PKT is used
to distill the latent behavior of the teacher—i.e., the behavior
within the intermediate dense layers—the performance of the
student agent improves significantly in both environments,
relative to CoL. In Figure 2, the average reward curves during
training are illustrated, demonstrating not only convergence to
a higher reward but also faster convergence.

TABLE I: Comparison of DRL agents at convergence. We
report the mean value ± std over 10 runs. (–) indicates a lack
of convergence.

Method Lift Door

TD3 (Teacher w. PI) 168 161
TD3 [3] – –
Behavior Cloning (CoL) [4] 107±22 105±30
Latent Behavior Cloning (ours) 131±16 144±36

(a) Block lifting env. (b) Door opening env.

Fig. 2: Average reward curves (mean±std over 10 runs) during
training for our proposed Latent Behavior Cloning (LBC) with
blue, versus Cycle of Learning (CoL) with red.

We identify two key reasons for these results. LBC offers
a softer objective than standard BC, by preserving batch-level
geometry of the representations, rather than enforcing an exact
match, easing student learning. Additionally, LBC provides
direct supervision in intermediate layers, enabling a gradual
learning process for the final action behavior. In contrast, stan-
dard behavior cloning directly regresses the teacher’s actions,
which is challenging when observation spaces differ.

Figure 3 compares the similarity matrices of the second-to-
last layer representations for the student and teacher, derived
from the same state despite different observation spaces.
Large discrepancies indicate significant differences in how
each model assigns similarities to sample pairs. As shown
in Figure 3a, standard behavior cloning fails to reconstruct
these pairwise similarities, losing the local geometry of the
representations. In contrast, Figure 3b shows that LBC more
accurately aligns the student’s similarity matrix with the
teacher’s, resulting in smaller residuals. This suggests that
our approach effectively transfers hidden knowledge from the
teacher’s intermediate layers, enhancing the student’s ability
to learn the teacher’s actions.
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(a) Behavior Cloning (CoL) (b) Latent Behavior Cloning

Fig. 3: Pairwise similarity differences between each student
and the teacher for a random batch, where smaller values
indicate a closer match in similarity assignments.

V. CONCLUSIONS

In this work, we present a novel method for transferring
knowledge of latent representations from a teacher trained with
privileged information to a student without access to the same
data. To achieve this, we propose Latent Behavior Cloning
(LBC), which uses Probabilistic Knowledge Transfer to align
the hidden representations of the teacher and student agents.
LBC enables the student to replicate the teacher’s behavior in
the hidden layers rather than limiting behavior cloning to the
action layer, like in previous works. Experiments on robotic
manipulation tasks demonstrate the superiority of our approach
over standard behavior cloning.
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