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Abstract—Multi-Agent Reinforcement Learning (MARL) has
achieved remarkable success in various applications, yet scala-
bility and non-stationarity remain fundamental challenges, par-
ticularly in large-scale multi-agent environments. To address
these issues, we propose Mean-Field Trust Region Policy Op-
timization (MF-TRPO), an algorithm that extends the Trust
Region Policy Optimization (TRPO) framework to the mean-
field setting. Our approach leverages mean-field approximations
to mitigate the complexity of multi-agent interactions while pre-
serving decentralized decision-making. By incorporating entropic
regularization, MF-TRPO ensures stable and robust policy up-
dates, enhancing convergence properties and enabling structured
optimization in non-linear MARL settings. We validate our
algorithm through numerical simulations of different scenarios,
demonstrating that MF-TRPO achieves competitive performance
compared to standard mean-field algorithms such as Fictitious
Play and Online Mirror Descent. Our results highlight the
effectiveness of MF-TRPO in handling large-scale interactions
while maintaining stability and adaptability.

Index Terms—multi-agent reinforcement learning, mean-field
games, trust region policy optimization, Nash equilibrium, scal-
able learning.

I. INTRODUCTION

Multi-Agent Reinforcement Learning (MARL) has achieved
significant success across various domains, including telecom-
munications (see, e.g., [4]). Many real-world problems nat-
urally involve multiple agents whose interactions can be
cooperative, competitive, or a combination of both. MARL’s
capacity to model and optimize these dynamic multi-agent
interactions makes it a compelling approach for addressing
complex decision-making challenges.
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One of the core difficulties in MARL is scalability, as the
joint state-action space grows exponentially with the number
of agents. Additionally, during training, each agent’s policy
evolves while others simultaneously update theirs, leading to
a severe non-stationarity problem that intensifies with larger
populations of players [12]. A widely adopted solution to
mitigate these issues is Centralized Training with Decentral-
ized Execution (CTDE) [5], [8]. This framework leverages
centralized information during training to counteract non-
stationarity while still enabling agents to make independent
decisions during execution.

However, most existing approaches primarily focus on sce-
narios with tens of agents. As the scale increases to multi-
agent systems (MAS) with hundreds of agents, the issues of
non-stationarity and independent learning become significantly
more pronounced. In this context, Mean-Field Reinforcement
Learning (MFRL) [10] provides a feasible framework to
address scalability issues. MFRL models players’ interactions
by approximating the influence of many agents through an
averaged effect. This approximation reduces computational
complexity and enables more scalable learning while preserv-
ing decentralized decision-making capabilities and mitigating
instability in training.

The fully decentralized nature of self-governed systems
enables independent learning, as agents adapt to collective
dynamics using only local information. This aspect is well
captured by the Mean-Field Nash Equilibrium (MFNE) frame-
work, which provides a structured approach to analyzing
equilibrium behavior.

In this paper, we introduce Mean-Field Trust Region Policy
Optimization (MF-TRPO), an algorithm that extends proximal
methods to the mean-field setting. By leveraging trust-region
updates, MF-TRPO enhances stability in policy updates while
ensuring smooth convergence—key challenges in nonlinear
MFRL models.

1932ISBN: 978-9-46-459362-4 EUSIPCO 2025



II. RELATED WORKS

a) Mean-Field Approaches in MARL: Many approaches
have been proposed in the MFRL setting. One notable method
is Fictitious Play (FP) [7], which employs a regularized version
of the softmax best response combined with a regularized
mean-field update, providing a structured iterative approach for
agents to adapt their strategies based on empirical population
distributions. Additionally, Q-learning-based methods have
been explored [1], [3], but these approaches often suffer from
instability due to their reliance on value function estimation.
To mitigate these challenges, strong regularization in the soft-
max policy updates is commonly applied, which can lead to
overly constrained exploration and slow adaptation in dynamic
environments.

b) Proximal methods: Beyond FP, some works have ex-
plored mirror descent approaches [6], [11], leveraging convex
optimization techniques to refine policy updates while ensur-
ing stable learning dynamics. These methods have demon-
strated strong empirical performance but often rely on strin-
gent assumptions regarding policy smoothness and regulariza-
tion.

c) Regularization: Many of these methods [1], [3], [11]
impose strong constraints on policy updates by enforcing a
minimum temperature for softmax policies. This restriction
ensures a degree of exploration but significantly limits the
adaptability of policies, effectively forcing them to remain
close to the uniform distribution. Such a constraint can hinder
the learning process, preventing the policy from converging
efficiently to optimal strategies in complex environments.

A more natural approach is to introduce regularization
directly into the optimization problem rather than artificially
constraining the policy structure. By incorporating a controlled
bias through entropic regularization, policies retain flexibility
while ensuring stable updates. This perspective allows for
smoother convergence and enhances stability without imposing
rigid constraints that could undermine learning efficiency.

Fig. 1. This image illustrates the intuition on how anonymity and homogeneity
in a MARL problem lead to a MFRL formulation. As the number of players
increases, the influence of each individual agent becomes negligible, leading to
a MFRL formulation. In this setting, a representative agent (in red) optimizes
its policy while interacting with a general population of similar players (in
blue), represented as a probability distribution over states. This abstraction
allows the analysis to shift from an explicit multi-agent system to a single-
agent optimization problem within a mean-field framework.

III. MF-TRPO

a) Framework: A Mean-Field Markov Decision Process
(MF-MDP) is defined as a tuple M = (S,A,P , r , γ), where
S represents the finite state space, A the finite action space, P
the transition kernel, r the reward function, and γ the discount
factor. In this framework, an agent interacts with the mean-
field distribution µ, which captures the aggregate behavior of
the population. The system evolves according to the transition
operator Pπ

µ , which is induced by the policy π mapping states
to distributions over actions.

In this setting, an agent aims to maximize its expected
discounted return, given by:

J(π, µ, ξ) := E

[ ∞∑
t=0

γt
(
r (st, at, µ) + η log

(
π(at|st)

))]
,

where the initial state s0 is drawn from the distribution ξ,
and each action at is selected according to the policy π. The
regularization parameter η serves as a tradeoff balancing learn-
ing stability, exploration, and exploitation. The value function
of the Mean-Field Game (MFG), v(µ, ξ) = maxπ J(π, µ, ξ),
represents the optimal achievable return over all policies,
ensuring that the agent maximizes its expected reward. Setting
η on the order of Õ(1/

√
N) ensures consistency with the

approximation accuracy of the MARL problem, aligning with
established trade-offs in MFRL approximations for large-scale
MARL settings.

b) Nash equilibrium: A Nash equilibrium in game theory
represents a stable state where no agent benefits from unilater-
ally changing their strategy. In MFGs, this concept extends to
large populations, where each agent optimally responds to the
overall population dynamics. This results in a self-consistent
equilibrium in which the mean-field distribution influences
individual decisions, which, in turn, shape the population
dynamics.

A Mean-Field Nash Equilibrium (MFNE) is defined by a
policy π∗ and a population distribution µ∗ that satisfy two
conditions: (rationality) π∗ is the best response given µ∗, en-
suring no agent has an incentive to deviate; and (consistency)
µ∗ remains stable under π∗, forming a fixed point of the mean-
field dynamics.

A. MF-TRPO

a) µ-parametric TRPO: Trust Region Policy Optimiza-
tion (TRPO) [9] is an algorithm designed to iteratively refine
policies while ensuring stability through constrained updates.
By enforcing a trust region constraint, TRPO prevents abrupt
policy shifts that could lead to instability or performance
degradation. Entropic regularization further enhances this sta-
bility, enabling smooth optimization and reliable convergence.

In this framework, the policy update admits a closed-
form solution based on the Q-function, which quantifies the
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expected return of taking action a in state s under policy π,
i.e.,

PolicyUpdate(π,Q; ℓ)(a, s)

:=
π(a|s) exp

(
1

η(ℓ+2)
(Q(s, a)− η log π(a|s))

)
∑

a′∈A π(a′|s) exp
(

1
η(ℓ+2)

(Q(s, a′)− η log π(a′|s))
) .

Formally, the Q-function in the mean-field setting is defined
as:

Qπ
µ(s, a) := r (s, a, µ) + γ

∑
s′∈S

P (s′|s, a, µ) · J(π, µ, s′) .

This formulation captures both immediate rewards and future
expected returns, guiding stable and efficient policy improve-
ments while ensuring that the updated policy remains within
the probabilistic simplex. This algorithm is considered in a
parametric setting dependent on the population distribution µ,
where it optimizes policies under a fixed µ. This formulation
allows the algorithm to be embedded within a broader popu-
lation update framework, ensuring a structured integration of
policy learning and population dynamics.

Algorithm 1 TRPO(µ)

1: Initialize: π0 is the uniform policy.
2: for ℓ ∈ [L] do
3: J(πℓ, µ, µ)← µ(I− γPπℓ

µ )−1rπk
µ

4: Sdπℓ
ν,µ

:= s ∈ S : dν,µπℓ > 0
5: for s ∈ Sdπℓ

ν,µ
do

6: for a ∈ A do
7: Qπℓ,µ(s, a)← r (s, a, µ)

8: +γ
∑

s′ P (s′|s, a, µ)J(πℓ, µ, s
′)

9: end for
10: πℓ+1(a|s)← PolicyUpdate(πℓ, Qπℓ,µ

; ℓ)(a, s)
11: end for
12: end for
13: Output: πL.

b) Mean-Field TRPO: MF-TRPO extends TRPO to solve
the MFG problem. The algorithm alternates between optimiz-
ing a policy under a fixed mean-field distribution µ using
TRPO(µ) and later updating it accordingly. This procedure
ensures smooth convergence to the equilibrium distribution,
preserving stability while adapting to the evolving dynamics
of agent interactions.

This mechanism mitigates non-stationarity and ensures con-
vergence toward a MFNE. By iteratively refining both policy
and population distribution, MF-TRPO provides a scalable
approach to equilibrium learning in MFGs. The inclusion
of entropic regularization further enhances its robustness,
leading to smoother policy updates and improved convergence
stability.

Algorithm 2 Tabular MF-TRPO

1: Input: Initial distribution µ0, number of iterations K.
2: Initialize: Initial policy π0 is the uniform policy.
3: for k ∈ [K] do
4: πk ←TRPO(µk−1).

5: µk := µk−1 + βk

(
µk−1

(
Pπk
µk−1

)M

− µk−1

)
6: # Update population distribution
7: end for
8: Output: µK .

IV. SIMULATIONS

We evaluate MF-TRPO in three settings related to Crowd
Modeling games. In these frameworks, agents navigate a
structure that can be either a grid or a connected graph to
avoid congestion. We benchmark our approach against FP
and Online Mirror Descent (OMD), two standard algorithms
for computing MFGs, demonstrating that MF-TRPO achieves
performance on par with state-of-the-art methods.

These examples have been extensively studied to assess
scalability, convergence, and adaptability of different ap-
proaches [2], [6], [7]. Their structured yet challenging dynam-
ics serve as standard benchmarks, providing a rigorous testing
ground for validating algorithmic advancements in this field.

a) Four Rooms Crowd Modeling Game: In this envi-
ronment, inspired by the Four Rooms example from [2],
a population of agents navigates and distributes themselves
across a grid, which may include obstacles. Our model consists
of a two-dimensional grid with discrete positions, structured
into four interconnected rooms separated by walls with narrow
passageways. Each agent’s state is defined by their position,
and they can choose between five possible actions: moving
left, right, up, down, or staying in place.

The reward function is designed to naturally discourage
overcrowding by penalizing agents based on the population
density at their location. Specifically, agents receive a negative
reward proportional to the logarithm of the density at their
destination, incentivizing them to distribute more evenly across
the state space. Additionally, a small bonus is awarded for
staying in place, while moving in any direction incurs a
penalty. Formally, the reward function is defined as:

r (s, a, µ) = −K log(µ(s)) + Γ(a) , (1)

where

Γ(a) =

{
0.2 , if a = 0 , (Stay)
−0.2 , if a ∈ {Left,Right,Up,Down} . (Move)

This formulation highlights the role of the parameter K in
balancing crowd aversion with the incentive to remain static.
Specifically, K regulates the balance between agents spreading
out to mitigate congestion and the resistance encountered
during movement. This means that, for high values of K,
the population distribution converges toward a stationary state
resembling a uniform distribution over the state space, as the
crowd aversion dominates. Conversely, for low values of K, a
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Fig. 2. Reading order: (a) Grid-based crowd modeling, (b) Islands crowd modeling, and (c) Grid-based crowd modeling with point of interest. Each environment
is evaluated using the Exploitability metric, providing a comprehensive assessment of equilibrium approximation and learning stability across different settings.
The solid lines represent values for η = 0.05, while the dashed ones represent values for η = 0.3.
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Fig. 3. The image illustrates the evolution of the mean field distribution for
the standard Four Rooms Game with a regularization parameter of η = 0.05,
starting from a highly concentrated distribution where agents are clustered in
a single cell. The first image corresponds to the initial distribution, the second
to the distribution after 103 iterations, and the third after 5 · 103 iterations.
As learning progresses, exploration increases, leading to a gradual spread of
agents across the state space. Eventually, the system converges to equilibrium,
with the final distribution shaped by the crowd aversion parameter K = 0.2.

non-trivial equilibrium emerges, where the initial distribution
of the agents plays a significant role in shaping the long-term
dynamics of the system.

The choice of the regularization parameter η significantly in-
fluences the final population distribution. This effect is closely
tied to the fact that a higher regularization parameter enforces
a stronger proximity to the uniform policy, thereby enforcing
exploration. Conversely, lower values of η allow for more
deterministic policies, enabling agents to better exploit local
rewards and settle into non-trivial equilibrium distributions.

In this model, state transitions do not depend on the mean-
field parameter but instead incorporate a degree of randomness
through slipperiness. Specifically, when an agent chooses to
move, she has a high probability of moving in the intended
direction while also having a smaller probability of deviating
toward other possible directions.

b) Two Islands Graph Crowd Modeling: The Two Is-
lands variation of the Crowd Modeling Game replaces the
grid with two interconnected graphs, referred to as islands,
connected by a single narrow bridge.

We consider |S| = 14 and |A| = 2, with a branching
factor of 2. In this setup, the primary challenge arises from
the limited connectivity between the two sub-populations.
The transition matrix is built randomly, i.e., each node is
pushed to visit one its neighbor with a certain probability.
The equilibrium now depends not only on local congestion
but also on the strategic decision of agents regarding whether
to remain on their starting island or transition to the other one.
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Fig. 4. The image illustrates the evolution of the mean field distribution for the
Two-Islands Crowd Game, starting from a highly concentrated distribution,
where agents are clustered in node 2, with η = 0.05. The first image
corresponds to the initial distribution, the second to the distribution after 102
iterations, and the third after 5·103 iterations. The crowd penalty is K = 0.2.

Here, the reward function solely penalizes the logarithm of the
mean field distribution. This heightened non-linearity in the
environment makes cautious policy updates crucial, as abrupt
changes can lead to instability in the learning procedure.

This framework allows for a wider range of experimental
variations. Imbalances in rewards between the two islands
or an increase in the cost of transitioning between them
allow for an investigation of the impact of environmental
asymmetries on agent behavior. These modifications offer
valuable insights into how equilibrium distributions shift under
different constraints and emphasize the importance of stability
in large-scale multi-agent reinforcement learning.

A lack of communication between the islands can be
observed in Figure 4, as point 6 remains sparsely populated,
while the agent mass redistributes into two well-defined clus-
ters. This clustering effect is evident when analyzing the
transition matrices, which reveal strong internal connectivity
within each island. Notably, convergence occurs rapidly after
103 iterations, as illustrated in Figure 2, where exploitability
sharply decreases during, indicating a swift stabilization of the
learning dynamics.

c) Four Rooms Crowd Modeling Game with point of
interest: This game builds upon the previously introduced
Four Rooms Game, with the additional feature of guiding
players toward a specific point of interest starget. In our case,
the latter is set to the bottom-right cell of the grid, encouraging
agents to navigate toward this target while trying to avoid
crowded situations. The new reward function reads as:

r̃ (s, a, µ) = r (s, a, µ) + max(0.3− 0.1 · d(s, starget), 0) ,
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Fig. 5. The image shows the evolution of the mean field distribution for the
standard Four Rooms Game with the addition of a point of interest. The first
image corresponds to the initial distribution, the second to the state after 103
iterations, and the third after 5 · 103 iterations. In this scenario,x the crowd
penalty is set to K = 0.4.

where r (s, a, µ) is a reward function defined in (1), and
d(s, starget) represents the distance between between the state
s and the state starget, measured as a ℓ1 distance between the
coordinates.

d) Hyperparameters: To ensure the reproducibility of
our results, we experiment with a range of hyperparameter
values, tuning them to achieve stable learning dynamics.

Hyperparameter Value

Discount factor γ = 0.9

Regularization coefficient λ = {0.05, 0.3}
Number of training iterations T = 5 · 103

Population update rate β = 0.01

Crowd penalization K = {0.2, 0.4}

e) Performance Metrics: To assess the effectiveness of
our approach, we evaluate performance using the Exploitability
metrics. This quantity measures the deviation from equilibrium
by quantifying the best response improvement possible for any
agent:

ϕ(π, µ) = max
π′

J(π′, µπ, µπ)− J(π, µπ, µπ) ,

with µπ = µ(Pµ
π )

∞. A lower value indicates that the learned
policy is close to a Nash equilibrium.

f) Visualization and Results: Benchmarking ourselves
against FP and OMD, as illustrated in the first image of Fig-
ure 2, our model demonstrates competitive performance com-
pared to existing approaches in the three examples, achieving
superior results in the long run. We observe that our algorithm
exhibits less aggressive performances in the early phases of
training with respect to the other methods. This behavior is
expected, as our approach prioritizes stability by preventing
overly greedy updates, ensuring a more cautious adaptation
process. As training progresses, our model effectively refines
its policy and ultimately surpasses the performance of the com-
peting algorithms, confirming the robustness and effectiveness
of MF-TRPO in long-term learning.

These results highlight the robustness and applicability of
our approach, demonstrating its effectiveness in capturing
equilibrium strategies in large-scale multi-agent settings.

V. CONCLUSION

In this work, we introduced MF-TRPO, a novel Mean-
Field Trust Region Policy Optimization algorithm designed to

address scalability challenges in MARL by leveraging mean-
field approximations. By extending TRPO to the MFG setting,
we formulated a structured approach that ensures stable policy
updates while maintaining computational efficiency. Through
different experiments, we show that our algorithm effectively
balances agent interactions, outperforming traditional bench-
marks like FP and OMD. Overall, this work highlights the
potential of proximal-based methods in stabilizing multi-agent
learning and opens promising directions for further exploration
in scalable MARL frameworks.
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[6] Julien Pérolat, Sarah Perrin, Romuald Elie, Mathieu Laurière, Georgios
Piliouras, Matthieu Geist, Karl Tuyls, and Olivier Pietquin. Scaling
mean field games by online mirror descent. In Proceedings of the
21st International Conference on Autonomous Agents and Multiagent
Systems, pages 1028–1037, 2022.
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