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Abstract—This paper proposes a novel machine learning-based
source-matched channel coding approach for transmission of
short speech frames. We use a state-of-the-art speech codec
to compare conventional channel coded transmission, uncoded
transmission, and the proposed scheme. Our results demonstrate
that our separate source and channel coding approach for short
frames achieves superior performance compared to a state-of-
the-art joint source and channel coding (JSCC) approach. By
keeping separated source and channel coding, we take a step
towards addressing network-related aspects, and we allow for
independent training of the source codec and thus reduce the
training complexity of the overall transmission system. Addition-
ally, we present results on peak-to-average power ratio (PAPR)
constrained transmission to facilitate the implementation of the
proposed approach in real-world applications.

Index Terms—Speech Transmission, Source Matched Channel
Coding, Machine Learning-based Channel Coding.

I. INTRODUCTION

The ultimate goal of communication is the exchange of
information, that is relevant to the receiving user. Conventional
communication systems employ separate and independent
source and channel coding functions, where source coding
aims at representing the source information in the most
compact form possible into (binary) symbols / bits, whereas
channel coding encodes these symbols - agnostic to the used
source coding - for a reliable transmission over the per se
unreliable communication channel. For source and channel
codes of infinite block length and with the objective of
perfect (i.e., error-free) reconstruction, Shannon proved the
theoretical optimality of this separation. However, in practical
communication systems and with short block lengths, the
separation is sub-optimum. Therefore, joint source and channel
coding (JSCC) has attracted considerable research interest
recently, and this has been further fueled by the advent of deep
learning (DL), facilitating the realization and optimization of
communication systems according to perceptually motivated
losses. Since mobile data traffic currently represents a major
contribution to the global energy consumption and is expected
to further grow exponentially, source dependent communi-
cation becomes increasingly important for more resource-
efficient transmission [1].

Perceptual quality-oriented communication systems, also
considered as a certain class of semantic communication
systems, have been explored across various domains using
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DL-based JSCC approaches including video, image, text
and speech transmission [2], [3]. Corresponding works have
demonstrated significant performance gains, typically mea-
sured in terms of perceptual evaluation metrics over signal-
to-noise ratio (SNR) of the transmit channel, when compared
to conventional systems in their respective fields. Moreover,
JSCC methods that are designed for perceptual objectives
typically exhibit a graceful degradation in performance with
deteriorating channel quality, which highlights the robustness
of this approach under variable transmission conditions.

In this work, we focus on the transmission of speech signals
by employing a pre-trained neural speech codec (NSC) [4]
(cf. Section III-B2) as the source coding component. We
include a separate channel coding scheme that is trained
independently of but specifically for this source codec and
is hence matched to it. Therefore, we refer to our approach as
source-matched channel coding (SMCC). Hence, our proposed
scheme bridges the gap between conventional JSCC with its
significant gains and the complete separation of source and
channel coding. This allows, e.g., to store source-encoded data
(like audiobooks) on servers and transmit them on-demand to
users using the source-matched channel codec, or to transmit a
source-encoded payload via multiple hops (e.g., mobile phone
to base station, backhaul link, and remote base station to
remote phone) - each individually protected by SMCC while
the source coding remains end-to-end.

Our results demonstrate that SMCC achieves superior
performance compared to a selected state-of-the-art JSCC
scheme. Furthermore, over a large range of received speech
qualities, it outperforms conventional transmission schemes
that rely on the same source codec, emphasizing the advan-
tages of tailoring channel coding to the source codec. Our
findings also reveal that the output bit rate of the source en-
coder can be reduced to levels similar to those in conventional
systems. Finally, we demonstrate that our SMCC approach
can operate under typical peak-to-average power ratio (PAPR)
constraints, highlighting its practical feasibility for real-world
applications.

II. SYSTEM MODEL

In this section, we introduce a system model that can
represent both the considered benchmark schemes and our
SMCC approach. The system model comprises a transmitter,
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a channel, and a receiver. The purpose of the transmission
system is to convey speech at a constant frame duration.

A. Transmitter

A speech frame of duration T, i.e., a sequence of [ equi-
distant samples of a speech record, is represented by vector
s € R%. A source encoder maps s to a feature vector f,

f=s_enc(s) € R!s, (D

where s_enc(-) and Iy denote the encoding operation and
the length of feature vector, respectively. f comprises binary
symbols in conventional schemes, however, we allow for real-
valued symbols in order to include our SMCC approach as
well. The transmitter block responsible for modulation and
coding referred to as mod_cod(-) accepts f as input and
generates the real-valued encoded transmit symbol vector a,

a = mod_cod(f) € Rle, 2)

where [, denotes the number of transmit symbols per speech
frame.

B. Channel

After continuous-time pulse shaping filtering, the continu-
ous time channel, matched filtering and sampling, the received
symbol sequence when represented by a vector y is given by,

3)

where n € Rle is the noise vector, whose elements are i.i.d
Gaussian variables, n "~ A/ (0, No/2). Here, Ny /2 represents
the double-sided power spectral density of the white Gaussian
noise in equivalent baseband.

y:a+n€Rl“,

C. Receiver

The block responsible for demodulation and channel de-
coding characterized by the function dem_dec(-) accepts y as
input and delivers an estimate of the feature vector,

f = dem_dec(y) € RY. 4)

Based on this, the source decoder s_dec(-) produces an esti-
mate of the input speech frame,

§ = s_dec(f) € R, (5)

III. REFERENCE SCHEMES

In this section, we describe the state-of-the-art channel and
speech coding algorithms that serve as reference components
as well as the benchmark transmission schemes for comparison
with our proposed SMCC-based scheme, as detailed in Section
V.

A. Channel Coding

Polar coding with a code rate of 1/3, successive cancellation
list (SCL) decoding with list size of 64 is selected as a scheme
representing conventional channel coding due to its favorable
performance for short packets. Polar coding is implemented
via the Nvidia Sionna library [5].

be {01}

Fig. 1. NSC encoder and decoder block diagram.

B. Speech Coding

1) Enhanced Voice Services (EVS): We consider the 3GPP
Enhanced Voice Services (EVS) standard [6] as a state-of-
the-art non-neural speech coding approach. In our study, we
operate EVS with 7.2 kbps and packet loss concealment.

2) Neural Speech Codec (NSC): The recently proposed
real-time capable NSC [4] achieves low algorithmic latency
and computational complexity, rendering it suitable for real-
time communication applications. It employs a neural network
(NN), SEnn, which encodes speech frames of length 20 ms
sampled at 16 kHz (I; = 320) into a latent space representation
fi € RY with I, = 20. The latent vectors are discretized
using 3-bit scalar quantization (SQ) per dimension, producing
a bit stream b € {0,1}" with [, = 60. On the decoder
side, a corresponding dequantization step is applied, followed
by reconstruction through a decoding NN, SDyn. For further
details, we refer to [4].

C. Transmission Benchmark Schemes

As baselines, we have chosen the following combinations
of source and channel codecs:

1) EVS + Polar: Here, bits encoded by EVS with 7.2
kbps and Polar coding (see Section III A) are mapped to
binary phase-shift keying (BPSK) symbols and decoded at the
receiver side.

2) NSC + Polar: This scheme is similar to EVS + Polar,
except that we adopt NSC with 3.0 kbps for the source coding.

3) NSC-L Uncoded: We use the SEny module of NSC
for source coding. This transmission scheme does not use
an explicit channel codec - instead, the latent representation
extracted by the source encoder is first normalized to zero
mean and unit variance (with mean and variance computed
using the VCTK training set [7]) and then forwarded (as
a non-channel coded real-valued sequence) to the transmit
pulse shaping unit. After reception, the dem_dec(-) module
denormalizes the received signal in order to guarantee its
original mean and variance. Speech is reconstructed using the
resulting latent representation as input to the SDyy module
of NSC. With this scheme, we aim at exploring the graceful
degradation property of the NSC source codec.

4) Deep Joint Source-Channel Analog Coding for Low-
Latency Speech Transmission [3]: In this state-of-the-art
neural JSCC scheme, the parameters of the NN are jointly
optimized for both source and channel coding and specifically
for perceptual speech quality.
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IV. PROPOSED SMCC-BASED SCHEME

In the following, we introduce the system model com-
ponents of our proposed SMCC-based scheme and the cor-
responding training procedure. NNs are utilized for each
functional block.

A. System Model Components

The NN block of NSC which maps the speech frame to a
latent space representation, SExy, and the block regenerating
the speech frame from the reconstructed latent vector, SDnn
(cf. Fig. 1), are used as source encoder s_enc(-) and source
decoder s_dec(+), respectively. The source encoder and decoder
networks are pre-trained and were not altered. Details regard-
ing their architecture and training procedure are available in
[4]. An NN, CEnn, is employed in the mod_cod(-) unit and
another NN, CDyy, is utilized in the dem_dec(-) unit. In the
sequel, we will refer to our proposed scheme as NSC+SMCC.

In contrast to conventional channel codecs, the NN re-
sponsible for channel encoding, CEny, accepts real-valued
latent values as its input rather than binary symbols/bits. Its
architecture is inspired from [8], and summarized in Table 1.
Each convolutional layer uses a kernel size of five, with zero-
padding on both sides to maintain the input dimension. The
stride, dilation and groups are chosen to one, i.e., each filter
processes every input channel individually without skipping or
dilating values, and each input channel is connected to every
output channel. The first convolutional layer operates with a
single channel, while the subsequent four layers have 50 input
channels each. In all layers except the normalization layer a
bias is applied, and the exponential linear unit (ELU) activation
function is adopted. The dense layer reduces the output to a
single channel, enabling the network to produce the vector
that comprises the transmit symbols. We have considered two
power normalization modes, both of which make sure that the
long term average symbol energy is one. In the first mode, the
system maintains a constant average transmit packet energy,
while it enables the encoder to assign a higher packet energy
to some latent representation vectors than for others. We refer
to this mode as Dynamic Packet Energy Mode (DPEM). In the
second mode, constant packet energy is enforced regardless of
the content of the packet, denoted as Constant Packet Energy
Mode (CPEM).

Additionally, we have evaluated a scheme with a soft de-
limiter operation at the last layer (which provides the transmit
symbols) to account for a PAPR constraint.

The NN responsible for channel decoding, CDyy, comprises
1D convolutional layers of the same type as CExn. The final
layer is a dense layer with no activation. Its architecture is
summarized in the lower part of Table I.

B. Training

CEnn and CDny are jointly trained end-to-end. The training
chain begins with the latent representation delivered by SEnxn
as the input to CExy and ends with the latent representation
estimate at the output of CDyy. The training dataset consists
of latent representations generated by SExn from speech

TABLE I
ARCHITECTURE OF CEnn AND CDnN

Layer Type Input Chn Output Chn  Activation
CE1 ConvlD 1 50 ELU
CE2-5 ConvlD 50 50 ELU
CE 6 Dense - - ELU
CE 7 Power Norm None
CE 8 Clipping None
CD1 ConvlD 1 50 ELU
CD2-38 ConvlD 50 50 ELU
CD 9 Dense - - None

recordings in the VCTK/training dataset, which is a well-
known, widely adopted high-quality speech dataset. For each
recording, latent representations are extracted for each speech
frame of duration Tz = 20 ms, which are then stacked and
shuffled to create the final training dataset, that is denoted
by D. The joint training of channel encoder and decoder
minimizes a composite loss function defined as

where £1(-,-) and L3(-,-) denote the mean absolute error
(MAE) and mean squared error (MSE), respectively. We em-
pirically select A = 0.5. We linearly combine MSE and MAE
to avoid overemphasis on large errors. With FE,, denoting the
average transmit energy per transmit packet, i.e., per speech
frame, the training process uses FE/Ny levels uniformly
sampled (in dB domain) from the interval 12 dB < E,/Ny <
20 dB, as values below 12 dB do not yield meaningful quality,
while 20 dB already ensures near error-free transmission. The
NN weights are updated using the Adam optimizer with a
learning rate of 0.001, batch size of 3200, 3 values of 0.9 and
0.999, and no weight decay.

For the DPEM, batch normalization is applied during
training to generate transmit symbols. After convergence, the
weights and the normalization parameters, calculated over the
entire speech records in the VCTK training set, are frozen
and then used for inference. In contrast, in the CPEM, every
packet is energy-normalized individually both in training and
inference.

V. NUMERICAL RESULTS AND DISCUSSION

This section presents our experiments, the used metrics, and
a performance comparison.

A. Metrics

All records in the VCTK/Testing set are used to extract
speech frames to be transmitted. NSC+SMCC and the first
three benchmark schemes convey a 20 ms speech frame
sampled at 16 kHz, while transmission benchmark scheme 4
transmits speech frames of T = 8 ms also sampled at 16 kHz.
While we transmit one packet per speech frame, the different
schemes yield different transmit packet lengths [, due to the
differences in the compression rate of the source coding and
the modulation and coding rate of the channel coding scheme
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TABLE II
TRANSMIT PACKET LENGTHS AND SYMBOL RATES FOR TF = 20 MS

Scheme Src bits  Chn bits la Rsym (kHz)
EVS+Polar 144 432 432 21.6
NSC+Polar 60 180 180 9

NSC-L Uncoded - - 20 1
NSC+SMCC - - 20 1

(cf. Table II). Also the transmit symbol rates Ry, (rates of
symbols transmitted over the channel) differ.

For performance assessment, we employ the Extended
Short-Time Objective Intelligibility (ESTOI) Score, which is
a well-known and broadly adopted objective speech quality
measure with high correlation to the intelligibility of speech
signals of varying quality. It ranges from O to 1, where a higher
score means a better quality.

B. Discussion

Fig. 2 presents the perceptual quality (for error-free trans-
mission) of the considered EVS and NSC speech codecs as
horizontal lines. The ESTOI score is shown versus E;/Ny
for a transmission over the AWGN channel for the first three
benchmark schemes and NSC+SMCC, respectively. Here, an
ESTOI score of approx. 0.7 corresponds to an acceptable
quality and serves as our reference threshold. Comparing EVS
+ Polar and NSC + Polar, a reduction in source coding rate
from 7.2 to 3 kbps achieves approximately a 3 dB improve-
ment at the reference threshold. Surprisingly, NSC-L Uncoded
outperforms NSC+Polar when the ESTOI score is 0.75 or
lower. This improvement likely arises from two main factors:
first, NSC employs bounded uniform noise during training
to approximate quantization effects, which not only enhances
quantization performance but also introduces inherent forward
error correction capabilities in SExn. Furthermore, uncoded
transmission over AWGN benefits from graceful degradation.

At the reference threshold, NSC+SMCC shows a gain of
approximately 3 dB over NSC-L Uncoded, approx. 5.2 dB
over NSC+Polar, and roughly 8.2 dB over EVS+Polar, demon-
strating the benefits of an SMCC approach, as the source
codec is identical to that of NSC+Polar (except for the
discarded quantization and dequantization modules). Conven-
tional Shannon-based channel coding focuses on error-free
transmission for SNRs above a target SNR, which manifests
itself in the well-known “cliff effect” - here visible in the ES-
TOI performance of EVS+Polar and NSC+Polar. By contrast,
NSC+SMCC attempts to provide best reconstruction of the
latent representation for the complete SNR range used in the
training, resulting in graceful degradation.

According to Table II, NSC+SMCC requires the least sym-
bol rate Ry, = 1 kHz and achieves thus the highest band-
width efficiency. Increasing the number of transmit symbols
and thus lowering the bandwidth efficiency results in general
in a further improvement in power efficiency, i.e., an even
lower required £, /Ny for a target speech quality. Similarly, if
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Fig. 2. ESTOI score vs. E, /Ny for different schemes.

we replace BPSK by higher-order modulation for EVS+Polar
and NSC+Polar, the required E,/Ny will grow further.

The proposed channel encoder comprises 50.55k parameters
and requires 1.01 MMacs (Mega Multiply-Accumulate Op-
erations), while the corresponding channel decoder requires
of 88.2k parameters and 1.76 MMacs. When executed on a
single core of an Intel® Core™ i9-10900K CPU @ 3.70
GHz, encoding of a 20 ms audio frame takes 43 ps, and
decoding requires 72 ps. In comparison, Simulating the Sionna
implementation of polar coding under the given configurations
takes more than 10 times longer. However, the measured CPU
execution times may not fully reflect the actual efficiency
due to the involvement of machine learning libraries. Notably,
our proposed scheme employs cascaded convolutional layers,
which are well-suited for acceleration on dedicated CNN
hardware. Given their highly parallelizable nature, the channel
encoder and decoder could theoretically be reduced to 8 and
17 clock cycles, respectively, under optimal hardware acceler-
ation. The deep learning model underlying the used NSC [4]
comprises 3.61 M parameters and 343 MMacs. Furthermore,
it is implemented in a causal fashion with low delay which
enables real-time communication (see [4] for details).

The widely-used Perceptual Evaluation of Speech Quality
(PESQ) score does unfortunately not provide meaningful re-
sults for generative Al-based codecs like NSC, because they
are not waveform-preserving. However, ESTOI scores are
available for our fourth benchmark scheme from [3]. As its
speech frame duration 7y = 8 ms differs from the duration
Tr = 20 ms of the other considered schemes, we introduce
the useful energy E'j 5 received during the transmission of one
millisecond of speech for a fair comparison: for NSC+SMCC
we obtain Eq,s/No = % -1 ms/Ny, whereas for the
scheme in [3], we have E1,s/Nog = %SNR~a'n/8 ms- 1 ms
where the used SNR being valid for a real-valued transmission
corresponds to E;/(Ny/2) (Es: average transmit energy per
symbol), n is the speech frame length (in samples) and
a = l,/n with transmit packet length [,. The left part of
Fig. 3 shows a comparison of NSC+SMCC and the scheme of
[3] (curves for the parameter sets from [3] with Tp = 8 ms,
n =128, SNR = 0 dB and 10 dB, g = 100, and varying «).
Moreover, The left part of Fig. 3 shows the required symbol
rates Ry, of the schemes.

It becomes apparent that for acceptable ESTOI scores above
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Fig. 3. (left) ESTOI score for NSC+SMCC and the best performing scheme of [3] (purple and red curve for varying ). The numbers along the curves represent
the transmit symbol rates Rsym (in kHz). (middle) ESTOI score vs. Ej, /Ny of NSC+SMCC with PAPR constraints and (right) quantized source-channel

codec interface.

0.7, our scheme achieves gains from 2.5 to 8 dB upon the
JSCC scheme of [3], even though our scheme offers the
additional advantage of separate source and channel coding,
whereas the scheme of [3] uses NN parameters jointly opti-
mized for source and channel coding. Moreover, the bandwidth
efficiency of NSC+SMCC is higher.

In the middle part of Fig. 3, the performance of
NSC+SMCC is shown under different transmit energy/power
constraints. In particular, the impact of DPEM and CPEM is
investigated. Additionally, the system performance is evaluated
when constraining the PAPR to 4, 3, and 2 (in linear scale).
A PAPR of 3 is particularly relevant as it corresponds to
that for M-QAM/M-ASK constellations for M — oco. Here,
a slight performance degradation of approximately 0.02 in
ESTOI score results compared to the model without PAPR
constraint.

Next we consider the effect of handing over 3-bit integer
values (”Int3”) instead of 32-bit floating-point (“Float32”) at
the interfaces between source and channel codecs. The right
part of Fig. 3 shows performance differences of 0.02 to 0.03
in ESTOI score, where the left label (Int3 or Float32) in the
legend represents the interface between source and channel
encoder and the right one that between channel and source
decoder. Hence, the standard output of NSC (with 3 bits
per latent representation) can be used with some performance
penalty.

The observed gains over comparable schemes might be
attributed to the absence of unequal-error-protection (UEP)
in the Polar code and residual redundancy in the source-
encoded latent vectors. Even though the employed NSC source
codec is among the currently most efficient ones and hence
supposed to reduce any redundancy as much as possible,
we found by inspection of the encoder output that it still
contains residual redundancy. This redundancy is reflected in
statistical dependencies between the entries of the latent vector,
and in a non-uniform probability distribution of the latent
representations.

This paper does not include a JSCC scheme based on NSC
because our focus is on the flexibility of training the proposed
SMCC scheme independently of the NSC. This allows for
rapid adaptation to different neural speech codecs without
requiring full joint optimization. A JSCC scheme based on
NSC will be explored in future work.

VI. CONCLUSION

We have found that it is possible to separate source and
channel coding while realizing similar or even larger gains
as with state-of-the-art joint source-channel coding (JSCC)
approaches based on deep neural networks. Our channel codec
is neural-network-based and optimized specifically for an input
that is a latent space representation of speech and is produced
by a state-of-the-art speech encoder - we refer to this as
”source-matched channel coding”. By focusing on channel
coding optimization alone, the neural network training is
simplified, as the source codec’s parameters remain fixed.
This approach also allows source coding to remain on the
application layer of the transmission network, such that source-
encoded, i.e., compressed, data can be stored on servers instead
of much larger raw source data. While the source coding and
decoding is only carried out on both ends of the transmission
chain, in a multi-hop transmission our channel coding can
be applied at each hop’s physical layer. To enable compat-
ibility with traditional communication protocols like TCP/IP
and paradigms like end-to-end encryption, further research is
needed to look into, e.g., source-matched encryption.
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