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Abstract—Nonlinear system modeling plays a pivotal role for
interference cancellation in wireless systems with specifically
high requirements of accuracy regarding the elimination of self-
interference in full-duplex radios. The paper investigates the po-
tential of identification and representation of the self-interference
channel by neural network architectures. This digital approach
is promising for its ability to cope with nonlinear representations,
but the variability of channel characteristics would be an obstacle
in straightforward application of data-driven neural networks.
We hence propose architectures with adaptive elements to achieve
successful training and testing. We document and share our data
for reproducibility of results and for further investigations with
possibly stronger models and enhanced performance.

Index Terms—system modeling, neural networks, full-duplex

I. INTRODUCTION

Inband full-duplex (IBFD) systems use one and the same

frequency resource for simultaneous sending and receiving.

Hence it requires cancellation of the strong self-interference

(SI) of the transmitter into the receiver. The technology status

implies possibilities of active or passive SI shielding in the

propagation domain, adaptive or non-adaptive cancellation in

the analog receiver unit, and adaptive cancellation in the

digital baseband section of the receiver [1]–[3]. The different

treatments would need to be joined to about 100 dB self-

interference cancellation (SIC) in a system [4], [5]. Because

of nonlinearity of the SI path, a fruitful link to predistortion

technology in RF transmitters can be made also [6], [7].

The majority of approaches on the digital side has been

concerned with signal processing for SIC using maximum-

likelihood [8], subspace [9], mean-square error [10], least-

squares [11], linear [12] and/or polynomial adaptive-filter

methods [13], [14]. For relieving the extraordinary accuracy

required for SIC, further approaches consists in the design of

robust receivers via non-convex optimization [15] or modified

matched filtering [16]. The transmitter side as well can be

optimized to support the SIC task, e.g., by active injection of

compensation signal [17] or by the choice of pilot sequences

with favorable nonlinear behavior [18].

More recently, the SIC problem also has been approached

with machine learning, specifically, with neural network rep-

resentations [19]. Neural networks were shown to line up or

even improve over linear and polynomial modeling accuracy,
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while reducing computational complexity [20]–[22]. Realtime

assessment of neural networks was demonstrated in [23].

Frequently the SI modeling uses parallel linear and nonlinear

components [22], [24], [25] and, more rarely, a cascaded

representation [25] in a very interpretable fashion.

Ultimate utility of neural network models might be ham-

pered by the fixed nature of trained models in case of time-

varying SI channels and by the limited availability of datasets

for comparative analysis and benchmarking of the models [19].

We note that the variability of SI channels is recently addressed

in [25], [26]. Both of the aforementioned limitations are

addressed with the approach of our paper. We specifically

demonstrate the failure of common network architectures in

case of variable linear or nonlinear elements in the data. As

a remedy we therefore propose architectures which combine

training and adaptation, i.e., with a subset of trainable weights

to represent invariant and another subset of ”adaptive” weights

to fit variable characteristics of the data (not going as far as

claiming online adjustment of the weights though). Moreover,

the data prepared for our analysis is documented and made

publicly available for reproducibility and further utilization in

the community. The data is synthetic and meant as baseline

for development and analysis, notwithstanding the utilization

of real SI recordings which is beyond the scope here.

Sec. II depicts the full-duplex SI problem and two basic SIC

options (named ”Hammerstein” and ”Wiener”). Sec. III de-

scribes our construction of research data with varying levels of

difficulty. Sec. IV then introduces neural network architectures

for the Hammerstein system option with different effort for

coping with system variabilities. Sec. V presents results and

comparison with baseline models, before Sec. VI concludes.

II. OVERVIEW OF FULL-DUPLEX SYSTEM

From the wide range of possible SIC system options, we

firstly consider the baseband design of Fig. 1.a. The transmit

signal s[k] at discrete time k is D/A converted and passed

to the TX antenna via a nonlinear power amplifier (PA). The

wireless SI path from the TX to the RX antenna is assumed to

be linear. The parallel SIC path exhibits ”Hammerstein” logic,

i.e., nonlinearity f(s) followed by a linear dynamical system

wk, to represent the PA and the linear SI path, respectively. The

purpose of the parallel SIC path is to predict and cancel the SI

yH(t) in the analog domain before saturation of the low-noise

amplifier (LNA) and the A/D converter in the receiver takes
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Fig. 1. System options with self-interference cancellation.

place. To this end, the network output passes through auxiliary

D/A conversion and RF circuitry [27], [28]. The residual SI in

the digital domain is termed r[k]. Other hardware impairments

or the precise effect of the aforementioned RF circuitry will be

neglected in our data. Our study is primarily concerned with

simulation and treatment of SI path variabilities.

An opposite design may use ”Wiener” logic, i.e., a linear

dynamical model element wk followed by nonlinearity g(x)
for SIC in Fig. 1.b. The transmit signal z(t) after the power

amplifier is captured by attenuation (ATT) circuitry to match

the signal to the range of an auxiliary A/D converter. The

conception here is that any PA nonlinearity is already encom-

passed by the utilization of the analog reference signal z(t)
as input for SIC and does not need to be modeled by the

network [29], [30]. The inevitable saturation of the RX A/D

is here addressed via the nonlinear element g(x) to achieve SI

modeling and subtraction from the received signal yW[k].

III. DATA GENERATION

For both system options of Fig. 1 we simulate high-

throughput (HT) WLAN transmission [31] using orthogonal

frequency-division multiplex (OFDM) signals in the complex

baseband according to IEEE-802.11 [32], specifically, the n-

channel with 20MHz bandwidth and 64-QAM.

Our SI channel assumes separate antennas for up- and

downlink with TX and RX at a distance of 30-50 cm [33]–[35].

The SI channel hSI[k] simulated in the discrete-time domain is

thus represented as a multipath model with two components: a

dominant, quasi-static internal (or direct) path hiSI[k] between

TX/RX antennas and an external multipath heSI[k] due to

reflections of the environment, i.e., hSI[k] = hiSI[k] + heSI[k].
Furthermore, hSI[k] is based on measurements in [35], where

real SI channels of several environments were characterized

such that (a) the power of the internal path is 5 to 10 dB higher

than the strongest external path and (b) the root mean-square
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Fig. 2. Facts of the data generation: a) PDP of SI channels hSI[k] with
standard deviations; b) Parameters cf and cg vs. the SI-SDR.

(RMS) delay spread is in the range of 20 to 40 ns. Specifically,

we rely on the WLAN multipath fading ’Model C’ [31] and

modify it1 to meet these properties by our hSI[k]. The resulting

power delay profile (PDP) is illustrated in Fig. 2.a and exhibits

a duration of 550 ns (corresponding to 12 filter taps at 20 MHz

sampling rate) to reach the noise floor.

The PA nonlinearity of Fig. 1 assumes only amplitude-to-

amplitude (AM/AM) distortion [30], [37], while the receiver

A/D is simulated as a saturation of its input signal, i.e.,

PA(s) = F (|s|) · ej·arg (s) , F (|s|) = f · arctan(cf · |s|) (1)

AD(y) = G(|y|) · ej·arg (y) , G(|y|) =
{
|y|, |y| < cg

cg, |y| ≥ cg ,
(2)

with unit-variance input s, the linear factor f to adjust the

PA output to 20 dBm, and cf and cg as nonlinear scale and

saturation parameters, respectively. The related distortions can

be quantified by the scale-invariant signal-to-distortion ratio

(SI-SDR) [38] as shown by Fig. 2.b.

The SIs in Fig. 1 are then simulated at discrete time k for

the ”Hammerstein” (H) system option as

yH[k] = PA( s[k] ) ∗ hSI[k] + n[k] (3)

and for the ”Wiener” (W) system option as

yW[k] = AD
(
( z[k] ∗ hSI[k] + n[k]) ·

√
105

)
, (4)

where ∗ denotes discrete-time convolution, n[k] is a receiver

noise floor at -90 dBm/MHz, and we have 50 dB LNA gain.

Our datasets are constructed with variable or invariable SI

channels and nonlinearities for both system options, labeled

(H) ”invNL+invSI”, ”invNL+varSI”, and ”varNL+varSI”

(W) ”invSI+invNL”, ”varSI+invNL”, and ”varSI+varNL” ,

each consisting of 10 files of simulated WLAN signals2. A

variable SI channel per file is based on new path gains for

hSI[k], while variable nonlinearity is distributed uniformly in

an 8 dB interval around mean SI-SDR0 =10 dB.

1The Matlab WLAN Toolbox [36] is employed for implementation.
2The generated datasets and the MATLAB code for generation are avail-

able on GitHub under https://github.com/STHLabUOL/SICforIBFD. Larger
datasets could be created for possibly large neural network models.
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IV. NEURAL-NETWORK ARCHITECTURES

A range of models is presented to cope with the data

according to the Hammerstein system of Fig. 1.a. The models

are well guided by the Hammerstein configuration and im-

plemented (including further baselines) with complex-valued

computations for the complex baseband. The model sizes are

deliberately small in terms of the number of trainable weights

in order to support SI system identification with small amounts

of data. The complex-valued residual yH[k]− ŷH[k] between

system and model is minimized via the MSE loss.

Fig. 3 shows a first model which is here termed ”global”

in the sense that a single set of trainable weights is optimized

to fit all available ”signals” (i.e., the files of a dataset) in the

batch dimension of the input tensor. The temporal ”samples”

of each signal appear in the feature dimension. Cartesian s[k]
is firstly split into magnitude and phase to prepare for AM/AM

nonlinear PA modeling [37], [39]. The actual nonlinearity of

f(s) in Fig. 1.a is here represented by a multilayer perceptron

(MLP) with tanh activations, where the number of units P
per hidden layer is implemented by filters of convolutional

layers. A single output unit (linear) is then recombined with

the original phase. The tensor format at this point of the

model complies with the input tensor. In the final model stage,

the temporal samples are taken to a complex-valued linear

convolution with filter length L to represent the dynamical

part wk of the Hammerstein model.

The global Hammerstein representation is likely to fail when

optimizing for datasets with variable SI channels hSI(t) in

different signals (i.e., file IDs). Our next model in Fig. 4

therefore retains the complex-valued MLP stage for nonlin-

ear representation, but transposes the signals with possibly

different SI channels to the last dimension of the tensor. A

”depthwise” convolution (using Tensorflow jargon) can then

apply its competence of individual kernels for individual

signals in order to represent their individual SI channel. For its

ability to host individual weights for each file ID, the model is

here termed ”adaptive”. The output tensor of the convolution

is finally reverse transposed to comply with the target signals

for loss computation. The model bears functional similarity

with the cascaded TID model in [25].

The last model in Fig. 5 applies a generalization of the

nonlinear MLP stage while retaining the depthwise treatment

and thus ”adaptivity” of the previous model. Our nonlinear

generalization adopts an architectural property of ”parallel”

Hammerstein modeling [40] by expanding the former single

MLP output into P output units. This additional dimension

enables the subsequent depthwise convolution to create in-

dividual nonlinear network behavior per file ID by forming

different linear combinations from the P -dimensional MLP

output. This effort goes with the hypothesis for successful

modeling of both variable nonlinear and variable linear input-

output relationship merely by means of linear parameters.

V. TRAINING AND EVALUATION

We here evaluate the Hammerstein subset of the data from

Sec. III with various models. The Wiener data (while the data
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Fig. 3. Global complex-valued Hammerstein model.
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Fig. 5. Parallel adaptive complex-valued Hammerstein model.

is provided) is not evaluated for space limitations in this paper.

For the Hammerstein data our comparison includes

• the global Hammerstein model of Fig. 3

• the adaptive Hammerstein model of Fig. 4

• the parallel adaptive Hammerstein model of Fig. 5

• the time-delay feedforward neural network (FFNN) [22]

• the time-invariant nonlinear distortion (TID) model [25]

• and the memory polynomial (MP) model [13], [40].

The MLP of our Hammerstein models consists of 2 hidden

layers with P=8 nonlinear units each, plus the output layer,

1949



thus 8+64+8=80 trainable weights. The parallel Hammerstein

model discards the output layer in order to provide P output

units for nonlinear expansion. The linear convolution part

of the global Hammerstein model uses kernelsize of L=32,

thus over-modeling the 12 filter taps of our data construction.

For adaptive Hammerstein modeling with 10 input files, the

kernelsize multiplies to 10·32=320, and for parallel adaptive

Hammerstein to 8·10·32=2560 trainable weights. It can be

reported that straightforward upscaling of these model sizes

would not deliver stronger results for the data at hand.

Our implementation of all models uses Tensorflow with

the Keras backend. The following experiments use differ-

ent subsets of data with increasing levels of difficulty by

the data variability, i.e., ”invNL+invSI”, ”invNL+varSI”, and

”varNL+varSI”. All data files of one experiment together form

a single batch for model optimization. Minimization of the

MSE is pursued with a fixed number of 104 epochs in order

to study the related learning behaviors. In all cases we rely on

the Adam optimizer with learning rate of 0.01.

Fig. 6 firstly shows results for the invariant Hammerstein

data (”invNL+invSI”). Model performances are compared in

terms of overall SI attenuation SIA = σ2
z/σ

2
yH−ŷH

, thus

including the 35 dB passive SI isolation according to Fig. 2.a.

A linear model on this nonlinear data is then limited to 50 dB,

which is plausible with our SI-SDR of 10 dB of the data. The

global Hammerstein model clearly better fits the nonlinear

data and attains training SIA of about 85 dB. The model is

validated to about the same SIA with test data constructed

with different waveforms on the same nonlinearity and impulse

response. The memory polynomial (MP) exhibits similar SIA.

The FFNN network cannot fit the data at hand.

Fig. 7 steps up difficulty to SI data created with variable SI

channels (”invNL+varSI”). Here, global Hammerstein model-

ing already fails to fit the training data, which is plausible

from a perspective of nonlinear system identification on in-

consistent plants (the global Hammerstein model supposedly

represents an average of different SI channels). Our adaptive

Hammerstein model with its individual kernel per training

signal can fit the different SI channels and, hence, represent

the inconsistent data. An SIA of 95 dB (notably a bit higher

than in Fig. 6 before) is attained by the adaptive model with

training and test data (the test data comprising of different

waveforms, SI channels, and noise). To this end, the idea of

”adaptivity” of the model extends into the test phase by

adjusting the linear model part to the test data with few epochs.

Under this circumstance, test performance even can be slightly

higher than training performance of a model. The baseline MP

degrades a little bit. The baseline TID aligns with adaptive

Hammerstein. The FFNN baseline again falls behind.

Fig. 8 finally uses the data subset with variable SI channels

and variable nonlinearities per signal (”varNL+varSI”) which

may further hamper system modeling by neural networks. The

before successful adaptive Hammerstein model now indeed

demonstrates an SIA limitation of 60 dB, but the parallel Ham-

merstein model in this case can restore 80 dB via its capacity

of expanding the different nonlinear functions by individual
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Fig. 6. Learning curve for the invariant Hammerstein SI data.
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Fig. 8. Data with variable nonlinearity and variable SI channel.

kernels on the multiple MLP outputs. Once more, the required

model ”adaptivity” is implemented by adjusting all linear

output weights to the test data. The average MP performance

degrades to 70 dB with the variable nonlinearities, which can

be traced to the signals with lowest SI-SDR in this dataset.

Both the FFNN and TID baselines now fall behind.

VI. CONCLUSION

Available neural models of RF self-interference (SI) are

typically architected with a strong orientation in domain

knowledge of inband full-duplex systems. Limitations are then

demonstrated by the specific model architecture, the variability

of the SI channel and/or the nonlinearity in it. Our study
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provides a structured dataset for these various difficulties in SI

modeling. Moreover, we propose the parallel / adaptive Ham-

merstein neural network SI model to cope with the difficult

configuration of variable SI channel and nonlinearity. It beats

available neural network models, but polynomial modeling

remains competitive in case of moderate nonlinearity.
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