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Abstract—This paper proposes a general framework, where
energy-harvesting devices may cooperate with one another to
perform their learning tasks, in a peer-to-peer fashion. Unlike the
classical edge-inference scenarios, where inference tasks are split
between an edge device and an edge server (ES), our model con-
siders a peer-to-peer (P2P) wireless network, where each mobile
device (MD) can operate both as a client and as a server for other
nodes. The framework first establishes node pairs on the basis
of the channel state information. Within each pair, nodes can
either process their tasks locally or offload them to the associated
node, allocating both transmission and computational resources
through a Lyapunov optimization procedure. Simulation results,
targeted to an image classification task, validate the effectiveness
of the proposed algorithm and highlight its potential for broader
applications in various scenarios and use cases.

Index Terms—Cooperative Inference, resource allocation, Lya-
punov optimization

I. INTRODUCTION

Edge Intelligence [1] has recently emerged as a crucial
technology for delivering cost-effective, low-latency machine
learning, and artificial intelligence services in next-generation
mobile networks. Several studies highlight how computational
offloading at the network edge enables ML services with
lower latency and reduced energy consumption across various
scenarios and use cases, including the Internet of Things [2],
Industry 4.0 [3], and vehicular communications [4].

Ensuring service sustainability, particularly for devices with
limited energy and computational resources, requires dynamic
resource management that balance inference accuracy, latency,
and energy consumption. In recent years, significant research
efforts have been dedicated to developing such strategies [5].

Related Works. Several resource allocation frameworks
have been proposed to execute cooperative tasks at the network
edge [6]–[9]. Authors in [10] considered dynamic resource
management for Industrial IoT applications, to optimize learn-
ing tasks performed by deep neural networks (NNs), in mobile
edge computing scenarios. Similarly, [11] explores resource
allocation based on Lyapunov optimization (LO) [12], to
achieve an optimal trade-off between energy consumption,
latency, and inference accuracy at the network edge. In [13],
a LO-based resource management is applied to decentralized
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estimation in energy-harvesting networks, while [14] inves-
tigates an edge-inference scenario designed for ultra-reliable
and low-latency communications in vehicular networks. LO-
based strategies, can also handle resource management for
mobile edge-learning within Goal-Oriented Communications
(GOC) [15], as in [16], [17], [18], and references therein.

Our contributions. Rather than assuming the use of edge
servers (ESs) like in the aforementioned works, we consider
a peer-to-peer (P2P) network where each mobile device (MD)
is equipped with multiple inference models, each offering
a different trade-off between computational complexity and
learning accuracy. Furthermore we assume each MD can
simultaneously act both as a client and a server. Simulations,
for image classifications by Convolutional NNs (CNNs), val-
idate the proposed framework, highlighting its potential and
motivating further investigation also in other scenarios.

II. SYSTEM MODEL

We consider a P2P wireless network with K MDs, where
resource management evolves in a discrete time fashion, on
time slots indexed by t, with a fixed duration τ .

In any time slot, a MD can generate Ak(t) tasks, denoted
as Bk(t) = {ω(i, t)}A

k(t)
i=1 , e.g., a set of images indexed by i.

Each MD can either locally process its own tasks, or
partially offload the inference to another MD, or queuing the
tasks to be processed/offloaded in a future slot Tdec(t) ≥ t.
Each MD is equipped with a set Sk of inference models, each
one characterized by a different trade-off between inference
accuracy and complexity. We encode the decisions to offload
some tasks during the t-th time slot by

Ik(t) =

{
1, if MD k offloads data at the t-th slot
0, otherwise.

(1)

To simplify management, we assume that at each time slot
the offloading can be performed among pairs of nodes, with
a pairing that is encoded in the matrix M(t), defined as

[M(t)]k,k′ =

{
1, if MD k is associated with MD k′

0, otherwise.
(2)

The connectivity matrix M(t) may be established by either
a centralized or distributed policy. We assume a centralized
controller with perfect knowledge of all the network links. The
controller updates the connectivity matrix once every S time
slots according to the policy described in the next sections.
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Fig. 1. System model. Edge Devices are associated in pairs. Each MD may decide to process the data locally or to offload a a task to its associated MD.

Notably, adjusting the refresh rate S enhances the algorithm’s
ability to adapt to non-stationary environments.

Offloading variables and connectivity matrix are linked by

Ik(t) + Ik
′
(t) ≤ 1, ∀k, k′ : [M(t)]k,k′ = 1, (3)

to ensure that, at any time slot, the offloading between couple
of nodes is mono-directional, e.g., either k → k′ or k′ → k.

A. Latency Model
At any time slot, the k-th MD may transmit (offload) a

number of tasks given by

Nk
tx(t) =

⌊
τRk(t)

W k

⌋
, (4)

where W k are the bits required to encode the task, while Rk(t)
is the bit rate assigned by the management policy, depending
on the channel between MDs k and k′, and the trade-offs
between batteries energy, latency, and learning precision.

We assume that the remotely offloaded inference proceeds
in parallel with the transmission, as new tasks are received.
Furthermore, we assume that the offloaded tasks have to be
immediately processed by the remote MD k′, which can also
process part of its previously buffered tasks, according to

Nk′

l (t) =

⌊
τfk′

d (t)βk

F (ρk′)

⌋
, (5)

where fk′

d (t) is the MD clock frequency, βk′
converts number

of FLOPs in clock cycles, while F (ρk
′
) are the FLOPs needed

to process a task of the k′-th MD through the NN ρk
′ ∈ Sk′

.
Assuming that each k′-th MD may operate with a clock fre-

quency 0 ≤ fk′

d (t) ≤ fk′

max for all t, part of the computational
capabilities of the MD can be assigned to complete tasks of the
other MD it is paired to. We thus define fk

k′(t) = fk′

max−fk′

d (t)
the fraction of its clock frequency the k′-th MD may reserve
for tasks possibly offloaded by the k-th MD. Thus, the
maximum number Nk

k′(t) of tasks the k′-th MD may process
for the k-th one is given by

Nk
k′(t) =

⌊
τfk

k′(t)βk′

F (ρk(t))

⌋
. (6)

In practice, it makes sense to impose the following con-
straints to the resource management policy:

1) Nk
tx(t) ≤ Nk

k′(t), to limit the number of transmitted
tasks to the maximum number of tasks that the destina-
tion MD can process at the t-th slot.

2) The feasible transmission rates have to be high enough
to guarantee that at least a task can be transmitted within
the useful portion δkmin(t) = τ − F (ρk)/(fk

k′(t)βk′
) of

the time slot, where F (ρk)/(fk
k′(t)βk′

) is the time the
destination MD needs to take a decision on the task.

This way we ensure that the time required to offload and
process a task will not exceed the duration of a time slot.
Thus, defining Rk

min(t) = W k/δkmin(t) and Rk+
max(t) =

(W kNk
k′(t))/τ , the transmission rate will be subject to

Rk
min(t) ≤ Rk(t) ≤ Rk

max,s(t). (7)

Lets define the quantity

Nk
d (t) = Ik(t)Nk

k′(t) + (1− Ik(t))Nk
l (t), (8)

which quantifies the number of tasks the k-th MD processes
either remotely, or locally, during the t-th slot.

According to Lyapunov optimization [12], we model the
latency terms considering a set of service queues. Specifically,

Qk
d(t+1) = max(0, Qk

d(t)−Nk
tx(t)I

k(t)−Nk
l (t)I

k(t))+Ak(t)
(9)

denotes the evolution of the queue for the k-th user.
Assuming that the arrival process Ak(t) has a stationary

arrival rate λk, and defining Ak = λk/τ , exploiting the
Little’s Law [19], the edge-to-edge latency can be expressed
as Dk

avg = Qk
avg/A

k. Thus, the long-term latency constraint
can be formalized as a constraint on the average queue length

lim
T→∞

1

T

T∑
t=1

E{Qk
d(t)} ≤ Qk

avg. (10)

B. Energy Model

The energy model considers the energy spent both for
transmissions and computations. The matrix [H(t)]k,k′ stores
the wireless channel Hk,k′(t) between each pair of nodes.
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Assuming that each pair of MDs do not interfere with the
other pairs, the energy spent for transmission can be derived
from Shannon capacity in AWGN as [20]

Ek
tx(t) =

τBkN0

|Hk,k′(t)|2

(
exp

(
Rk(t) ln(2)

Bk

)
− 1

)
. (11)

The energy spent for computation at the t-th slot for the k-th
MD can be modeled by [21]

Ek
l (t) = τκkfk(t)

3, (12)

where fk(t) is the clock frequency of the k-th MD, and κk

denotes the effective switched capacitance of the processor.
Thus, the total energy spent by a MD is Ek

tot(t) = Ek
tx(t)+

Ek
l (t), and the overall system consumes an energy

Etot =

K∑
k=1

Ek
tot(t). (13)

We further assume that each MD can harvest energy from
the environment, and the battery level evolves as

Jk(t+ 1) = min(Jk
max,max(Jk(t)− Ek

tot(t), 0) + χk(t)),
(14)

where Jk
max is the maximum battery level, and χk(t) is the

energy harvested at the t-th slot by the k-th MD. We impose
the following long-term constraint on the average battery level

lim
T→∞

1

T

T∑
t=1

E{Jk(t)} ≥ Jk
avg (15)

C. Inference Performance

Once the inference decisions are taken, we assume to have
access to a feedback Gk related to a specific performance met-
ric (e.g., inference accuracy). Specifically, we are interested in
maximizing the following average objective

Gtot(t) =

K∑
k=1

1

Nk
d (t)

Nk
d (t)∑
i=1

Gk(ω(O(i), Tgen(t)) (16)

where O(i) is the task id at the top of queue Qk
d(t), while

Tgen(t) is the birth time of the task decided at the t-th slot.

III. PROBLEM FORMULATION AND SOLUTION

The system model we described so far is then employed in
the following long-term resource allocation problem

maximize
Φ(t)

lim
T→∞

1

T

T∑
t=1

E{Gtot(t)}

subject to (a) long-term latency (10) ∀k,
(b) long-term battery level (15) ∀k,
(c) Ik(t) + Ik

′
(t) ≤ 1,∀k, k′ : Mk,k′(t) = 1,

(d) 0 ≤ Ek
tot(t) ≤ Jk(t) ∀k, t,

(e) Rk
min(t) ≤ Rk(t) ≤ Rk

max(t), ∀k, t,
(f) 0 ≤ fk

d (t) ≤ fk
max, ∀k, t

(17)
where Φ(t) = {Rk(t), fk

d (t), I
k(t), ρk(t)}Kk=1 is the set of

the optimization variables at each time slot. Our aim is

to maximize the average inference performance under (a)
average latency and (b) battery level constraints. Constraint (c)
imposes a unique direction for the flow of the offloaded tasks,
while constraint (d) limits the energy consumption in each
time slot. Finally, constraints (e) and (f) define the feasible
transmission rates and clock frequencies.

A. MD Association Algorithm

The first aim of our resource allocation policy is defining
the association matrix M(t). To this end, we firstly organize
the time slots in frames, indexed by f ∈ N0 and characterized
by a fixed duration S. We assume that the association matrix
is constant within each time frame, i.e., M(t) = M(fS + 1)
for each t ∈ [fS+1, (f +1)S]. Then, at the end of each time
frame, the centralized controller establishes the MD pairs on
the basis of Algorithm1. At each step, Algorithm 1 associates
the pair of MDs characterized by the best channel. Of course,
many other resource allocation policies may be considered,
and their investigation is left for future studies.

Algorithm 1: MD association algorithm
Input: Channel State Matrix S = H(t);
Initialize M = 0

1: for k = 0 . . .K/2 do
2: (i∗, j∗)=maxi,j S
3: set M(i∗, j∗) = M(j∗, i∗) = 1
4: null rows and columns i∗ and j∗ of S
5: end for
6: return M

B. Lyapunov Based Solution

Following standard Lyapunov optimization [12], we asso-
ciate to each long-term constraint a virtual queue, that evolve
according to

Zk(t+ 1) = max(0, Zk(t) + µk(Qk
d(t+ 1)−Qk

avg))

Hk(t+ 1) = max(0, Hk(t) + νk(Jk
avg − Jk(t+ 1))),

(18)

where µk and νk are step-sizes used to control the convergence
speed of the algorithm. Overall violations of the long-term
constraints are captured by the Lyapunov function [12]

L(t) =
1

2

K∑
k=1

[Zk(t)2 +Hk(t)2], (19)

whose expected change between consecutive time slots gives
the Lyapunov drift plus penalty function (LDPP)

∆p(t) = E{L(t+1)−L(t)|Θ(t)}−V E{Gtot(t)|Θ(t)}, (20)

where Θ(t) = {Hk(t), Zk(t)}Kk=1. Exploiting some upper
bounds [12], herein omitted due lack of space, and defining
Q̃k

d(t) = (µk)2Qk
d(t) + µkZk(t), and H̃k(t) = µkHk(t) −
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(νk)2Jk(t) we end up with the following instantaneous prob-
lem, where we omit the time index t to ease the notation

min
Φ

K∑
k=1

−Q̃k
d[N

k
txI

k +Nk
l I

k]− V Gk + H̃kτκk(f
k
d )

3

+ H̃k τB
kN0

|Hk,k′ |2

(
exp

(
Rk ln 2

Bk

)
− 1

)
s.t. (17d)− (17g)

(21)

The solution to the problem presents significant challenges
due to two primary reasons:

1) The lack of a closed-form expression for the term Gk,
capturing the performance of the inference model.

2) The decision variables Ik and the learning model selec-
tion variable ρk introduce mixed-integer complexity to
the problem.

To address the first challenge, following an approach similar
to [17], we introduce a surrogate function G̃(ρk) that models
the average inference performance for each inference model
ρk used by the k-th MD. This surrogate function drives the
optimization process, while still leveraging the actual feedback
Gk(t) to asses the algorithm performance. Regarding the
second challenge, we note that the problem is separable across
connected user pairs (k, k′). For each pair, the integer variables
can be evaluated exhaustively. Specifically, assuming a fixed
inference model ρk, we determine the optimal local clock
frequencies for the MD pair (k, k′) when local inference is
used (i.e., Ik = Ik

′
= 0):

fk∗

d (ρk) =

[√
Q̃d

kβ
k

3κkF (ρk)H̃k

]fk+
max

0

, (22)

where fk+
max is the minimum between the maximum allowable

clock frequency for the MD and the maximum sustainable
clock frequency given the battery level Jk(t).

When Ik = 1, we assume offloading follows the direction
k → k′ (a similar approach applies for Ik

′
= 1), and the

optimal transmission rate for the k-th MD is given by

Rk∗(ρk) =

[
Bk

ln 2
ln

(
Q̃k

d|Hk,k′ |2

ln(2)H̃kW kN0

)]Rk
max

Rk
min

× I{Q̃k
d > 0},

(23)
where Rk

max is the minimum between Rk
max,s and the maxi-

mum transmission rate allowed by the energy budget Jk(t).
The optimal solution of the problem can be evaluated by

testing all the possible inference models employable by both
the devices in case of no-offloading, k → k′ offloading, and
k′ → k offloading, and then selecting the offloading decisions
Ik and Ik

′
and learning models ρk, ρk

′
leading to the lowest

joint cost for the MD pair.

IV. SIMULATION RESULTS AND CONCLUSION

We run the optimization algorithm for N = 10, 000 time-
slots, with a time slot duration τ = 10 ms, and considering
K = 4 MDs in the scenario, all with the same maximum

battery level Jk
max = 80 mJ, and the same long-term battery

constraint Jk
avg = 50 mJ, and average latency constraint

Dk
avg = 20 ms. The MD association matrix M(t) is computed

every S = 10 slots.
Computing model: the maximum clock frequency fk

max is
set to 2.8 GHz for MD2 and MD3 and to 2 GHz for MD1
and MD4. The number of FLOPs per clock cycles βk is set to
{10, 30, 30, 10} for the 1st, the 2nd, the 3rd and the 4th MD
respectively. We assumed an effective switched capacitance
κk = 1.097× 10−27 [ s

cycles ]
3 for all the MDs.

Channel Setting: we set for all the MDs the same band-
width Bk = 20 MHz, noise power spectral density N0 =
−174 dBm/Hz, and maximum transmit power pkmax = 3.5
W. The channel |Hk,k′(t)| between each device pair is as-
sumed to be stationary and Rayleigh distributed, with average
path losses E{|Hk,k′(t)|2} reported in Tab. I. For all the
MDs, we assumed images encoded in 8-bit format, composed
128× 128× 3 pixels, with a resulting size of W k = 48 KB.

TABLE I
AVERAGE PATH LOSS FOR CHANNELS BETWEEN DIFFERENT MDS.

MD1 MD2 MD3 MD4
MD1 N/A 90 dB 120 dB 130 dB
MD2 90 dB N/A 120 dB 110 dB
MD3 120 dB 120 dB N/A 100 dB
MD4 130 dB 110 dB 100 dB N/A

Inference task description: we considered an image classifi-
cation task based on the Intel Image Classification dataset [22],
composed of 17,000 RGB images belonging to 6 different
landscapes, and divided into 11,000 images for training and
3,000 images for validation and test sets. Tab. II reports
validation accuracy and complexity of the CNNs employed
at the different MDs 12.

TABLE II
AVERAGE ACCURACY AND COMPLEXITY OF THE INFERENCE NNS.

Model Name Validation Accuracy [%] Complexity [MFLOPs]
MobileNetv3 small 89.5 21.23
MobileNetv3 large 91.5 79.54

EfficientNet 93.2 137.76

Experimental Evaluation: Figure 2 shows the trade-off be-
tween average latency and accuracy for all the MDs. The
curves have been obtained for increasing values of the trade-
off parameter V ∈ {1× 101, 1× 102, . . . , 1× 106} (cf (20)),
averaging latency and accuracy over the last 1,000 slots. We
compared the proposed cooperative strategy (solid lines) with
a full local computation scenario (dashed lines) considering the
arrival rates Ak

avg ∈ {3, 4} tasks per slot. We note that both the
strategies satisfy the average latency constraint, represented
by the red dashed line. Improving inference performance
requires models with higher computational complexity, leading
to increased latency. Furthermore, as the arrival rate increases,
average accuracy decreases, since the strategies are pushed to

1Data in Tab. II model the terms F (ρk) in (5), (6), and the surrogate
objective function G̃(ρk).

2CNNs implementations are provided by https://pytorch.org/hub/
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select less powerful models to satisfy the latency constraint.
The cooperative approach achieves better latency vs inference
accuracy trade-offs, as indicated by the higher correct classi-
fication rates of the solid curves. Indeed, thanks to offloading,
MDs with less computational power can exploit more powerful
CNNs, deployed at other MDs, improving the accuracy. This is
confirmed by Table III, reporting the offloading percentages of
the various MDs for the realizations with the highest inference
performance (i.e., the rightmost points in Figure 2). Notably,
the majority of offloading decisions are made by MD1 and
MD4, as they are equipped with the least powerful processors.

0.89 0.895 0.9 0.905 0.91 0.915 0.92

12
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20

21

V>>

Fig. 2. Accuracy vs Latency trade-off for cooperative strategy (solid) and full
local computation (dashed).

TABLE III
OFFLOADING PERCENTAGES FOR THE DIFFERENT MDS (V = 1× 106).

Ak
avg [task/slot] MD1 [%] MD2 [%] MD3 [%] MD4 [%]

3 75.9 2.1 1.1 73
4 77.7 4.5 3.2 71.3
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Fig. 3. Battery level as a function of the time slot (Jk
avg = 50 mJ).

Figure 3 shows the long-term battery level over time in the
cooperative and the full local scenarios for the best accuracy
realizations (i.e., the rightmost points in Figure 2). We note
that also the long-term constraint in (15) is always satisfied.

To conclude, we presented a dynamic resource allocation
strategy for cooperative edge-inference with energy harvesting
devices. Simulations testified its effectiveness in optimizing
latency vs accuracy trade-offs. Future research may explore
non-ideal communication scenarios and specific applications,
such as goal-oriented communications.
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