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Abstract—Joint sensing and communication have become in-
creasingly important research topics for current and future
generations of wireless networks. These networks acquire and
store a large amount of data that does not provide helpful
information about the target location, for instance. As a contri-
bution, we propose a rank-reduction strategy aiming at reducing
the computational complexity in the target detection task. The
simulation results show that the proposed solutions are very
effective when considering the tradeoff between detection and
implementation costs.

Index Terms—OTFS, ISAC, Approximated Computation, Ran-
domized Computation

I. INTRODUCTION

It is envisaged that for future networks, such as 6G net-
works, communication devices should be capable of sensing
the environment as a complementary feature [1]–[3].

Integrated sensing and communication (ISAC) has been pro-
posed using different modulation techniques such as the well-
known orthogonal frequency division multiplex (OFDM) [4]
and most recently orthogonal time frequency space (OTFS) [2]
by exploiting the delay-Doppler (DD) domain. In high-
mobility communication scenarios, where the Doppler ef-
fect hinders communication for OFDM systems, DD domain
modulation offers clear advantages in terms of information
retrieval, and its key concepts are thoroughly explored in [5].

Energy efficiency is a general problem in engineering and
should be considered even for devices without power source
limitations. It is known that the reduction in power consump-
tion scales with the number of devices, and a seemingly small
reduction has a huge impact on a large scale. Data selection is
shown to be effective in reducing the computational burden of
the matrix product [6]–[8], enabling many machine learning
applications mainly when dealing with Big Data [8].

This work proposes using a matrix product approximation
for target detection in ISAC with constrained computational
complexity. Many multicarrier systems have a fixed number of
subcarriers, resulting in unnecessary range-Doppler resolution
for low-budget applications where sensing is a secondary fea-
ture of the system. We will see that much of the accumulated
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data is redundant for information on the targets; hence, we
propose methods to select data before performing the cross-
correlation at the receiver, achieving an approximate sensing of
the environment. The proposed method enables a compromise
between target detection probability and computational burden.

We divided the work into four more sections. In Section II,
we introduce the OTFS communication system model used
for ISAC. This is followed by Section III, where we explore
the integration between the DD domain and the range-Doppler
matrix and introduce the propositions for approximated sens-
ing. In Section IV, we present and discuss the results of a
numerical simulation for the presented method and compare
these results with a method without constrained computation.
Finally, Section V concludes the work.

II. SYSTEM MODEL

Following the description of the OTFS modulation sys-
tem [5], [9], [10], let XDD ∈ CM×N be the transmit-
ted information frame in the DD domain, represented as
XDD =

[
x(0) x(1) · · · x(N − 1)

]
, where N is the

number of transmitted blocks, M is the number of samples
per transmitted block, and x(n) ∈ CM is the n-th transmitted
block of information. As presented in [5], one can use the
inverse discrete Zak transform (IDZT) to achieve the OTFS
modulation from the DD domain, which results in

s = vec
(
XDDF

−1
N

)
, (1)

where s ∈ CMN is the discrete-time transmitted signal,
F−1

N ∈ CN×N is the inverse discrete Fourier Transform
(IDFT) matrix, and vec(·) is a vectorization operator which
vectorize a matrix in a column-wise stack, i.e., each column
is stacked according to the sequence of columns in the matrix.

The continuous-time transmitted signal is reconstructed
using an interpolation filter with impulse response g(t), hence

s(t) =

MN−1∑
k=0

s̄(k)g(t− kTs), (2)

where s̄(k) is the k-th element of s, Ts ∈ R is the sampling
period, and t is the continuous time index for the instant t ∈ R.

In the radar context, the received signal is composed of
echoes and can be modeled similarly to a multipath channel
for communication in high-mobility scenarios. Considering a
channel with P targets, the p-th echo path is modeled by a set
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of three parameters: a complex gain, hp ∈ C, that represents
the random phase and gain of the arriving signal, a delay τp ∈
R, which models the time between transmission and reception,
and a Doppler shift, νp ∈ R, caused by the relative velocity
between the transmitter and the receiver, or a cluster of objects
between transmission and reception. We can model the channel
in baseband as the following

h(τ, ν) =

P−1∑
p=0

hpδ(τ − τp)δ(ν − νp), (3)

with τp < T ∀ p, and |νp| < ∆f
2 ∀ p, where δ(t) is the Dirac

delta function, T = MTs is the block duration, ∆f = 1
T is

the spacing between subcarriers, and | · | is the absolute value
operator. In the delay-time domain, the channel is presented
as

h(τ, t) =

∫ ∞

−∞
h(τ, ν)ej2πν(t−τ)dν

=
P−1∑
p=0

hpe
j2πνp(t−τ)δ(τ − τp). (4)

Therefore, at the receiver, the signal is given by the linear
convolution of the transmitted signal with (4), resulting in

r(t) =

∫ ∞

−∞
h(τ, t)s(t− τ)dτ + w(t)

=

P−1∑
p=0

s(t− τp)hpe
j2πνp(t−τp) + w(t), (5)

where w(t) ∼ NC(0, σ
2
w) is additive noise. Then, r(t) is

converted by an analog-to-digital (AD) converter, and the
samples are stacked column-wise into a matrix Y ∈ CM×N

from which a row-wise discrete Fourier transform (DFT)
completes the discrete Zak transform (DZT), resulting in the
DD domain received signal,

YDD = YFN

=
[
yDD(0) yDD(1) · · · yDD(M − 1)

]T
, (6)

where yDD(m) ∈ CN is a vector containing the elements of
the m-th row of YDD ∈ CM×N .

For communication, an equalization process is required to
retrieve the transmitted information XDD from the matrix YDD,
this is extensively explored by other authors [5]. However, in
sensing applications, we use signal processing techniques to
recover range and Doppler information of possible targets [2]–
[4].

III. RANGE-DOPPLER SENSING IN DD DOMAIN

It is known that the range-Doppler matrix, used for radar
sensing, is identical to the demodulation process in DD
communication [2], [3]. Moreover, one can reduce the nec-
essary post-processing for range and Doppler retrieval to
a simple matched filtering process by selecting the correct
waveform [2], [3].

From (5), the channel effect in the transmitted signal is
perceived as the sum of repetitions of the transmitted signal,
according to the number of paths (or targets), shifted in delay
by τp and in Doppler by νp and weighted by a complex gain
hp. Let us begin our analysis by considering an information
matrix with a single column activated,

XDD =
[
x(0) 0M×(N−1)

]
, (7)

where x(0) =
[
x(0) x(1) · · · x(M − 1)

]T
and for the

time being, to simplify the analysis, we disregard additive
noise and consider quantized values for νp and τp

1 with ideal
pulse shaping and even values for N . Then, the received signal
in the DD domain is defined as

y(n) =

{
0M×1, n ̸= ∆f

2νp
+ N

2

xp, n =
∆f

2νp
+ N

2

, p = 0, . . . , P − 1,

(8)

where y(n) ∈ CM is the n-th column of YDD and xp ∈ CM

is x(0) weighted by hp and cyclically shifted τp samples, i.e.,

xp = hp

[
x(M − τp) · · · x(0) · · · x(M − τp − 1)

]T
.
(9)

Therefore, in this simplified scenario, the Doppler information
is directly extracted from the matrix by exploring which col-
umn is not null, while the delay information can be extracted
employing the cross-correlation of x(0) with each column of
YDD.

The cross-correlation is similar to a filtering process which
can be operated using the matrix product [11] of a Toeplitz
matrix Xband ∈ CM×M and the matrix YDD. The matrix Xband
is generated using x∗(0), as follows,

Xband =


x∗(0) x∗(1) · · · x∗(M − 1)

x∗(M − 1) x∗(0) · · · x∗(M − 2)
...

...
. . .

...
x∗(1) x∗(2) · · · x∗(0)


=

[
xband(0) xband(1) · · · xband(M − 1)

]
, (10)

where ·∗ indicates the complex conjugate of a number and
xband(m) ∈ CM is a vector corresponding to the m-th column
of Xband. The resulting matrix containing the desired estimates
is achieved with the product Ydes = XbandYDD, with Ydes ∈
CM×N .

One can ensure satisfactory cross-correlation results by
selecting a proper sequence for x(0). The Zadoff-Chu (ZC)
sequence is an example of a complex code with desirable auto-
correlation characteristics [12]; another well-known possibility
is the Barker code, as presented in [13].

Conversely, additive noise hinders reception, which affects
y(n) ∀ n. The effects of pulse shaping are perceived as a
spread of the pulses through the entire lattice of the frame [14],
and the non-quantized values of τp and νp result in imprecise
estimates of target delay and Doppler because the peak of

1The quantization ensures that
∆f

2νp
∈ [−N

2
, N

2
−1] and τp

Ts
∈ [0,M−1],

for p = 0, . . . , P − 1.
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the pulse main lobe is located in between samples of the DD
domain rectangle.

Despite being full-rank, after the simplified analysis, it is
clear that the matrix YDD is indeed sparse and can be approx-
imated to a low-rank matrix without major loss of information.
Hence, we propose using an approximated matrix product for
target estimation with reduced computational burden [6]–[8].

A. Approximated Sensing

As any matrix product, the product XbandYDD can be
interpreted as the sum of rank-one matrices resulting from the
outer product of the columns of Xband with the rows of YDD.
Let xband(m) ∈ CM be the vector containing the elements
of the m-th column of Xband and yDD(m) ∈ CN the vector
containing the elements of the m-th row of YDD, we can write
Ydes as follows

Ydes =

M−1∑
m=0

xband(m)yT
DD(m) =

M−1∑
m=0

Ym. (11)

Let ||x||2 =
(∑N−1

n=0 |x(n)|2
) 1

2

be the ℓ2-norm, defined

to any x ∈ CN vector, and ||x||1 =
∑N−1

n=0 |x(n)| its ℓ1-
norm. Following the approach from [6], we want to estimate
the product XbandYDD by selecting which Ym participate
on the sum (11). Since this approach aims to reduce the
computational cost, one must select the data before operating
the outer products. Therefore, we propose five approaches to
select L < M elements for the estimate.

i) Fully Randomized (rand): In this approach, the prob-
ability of selecting a row from YDD follows a uniform
distribution in a pooling with sample replacement, i.e., a
row can be selected more than once and the probability
is always pm = 1/M .

ii) Randomized ℓ1 (rand-ℓ1): Here, the probability of se-
lecting a row is shaped by the ℓ1-norm, i.e., the proba-
bility of each row is pm = ||yDD(m)||1∑M−1

m=0 ||yDD(m)||1
; the pooling

also has sample replacement.
iii) Randomized ℓ2 (rand-ℓ2): This method follows the same

principles of rand-ℓ1, however, we replace the ℓ1-norm
by the ℓ2-norm.

iv) Deterministic ℓ1 (det-ℓ1): In this method we select the
L rows with the highest values for the ℓ1-norm.

v) Deterministic ℓ2 (det-ℓ2): Similarly to det-ℓ1, we select
L rows based on the ℓ2-norm.

The rand-ℓ2 method is motivated by [6], where the norm
shapes the probability density function (PDF) for the random-
ized sampling; it induces the sampler to more often choose
rows with more energy. We propose using the norm-ℓ1 as a
method to further reduce the computational burden and main-
tain a similar PDF characteristic. On the other hand, the fully
randomized method is an approach that ignores any informa-
tion from the rows, making their selection equiprobable. The
deterministic methods are naturally motivated by questioning
how a deterministic approach would perform compared to the
randomized approaches.

Furthermore, reweighting is necessary to ensure proper
approximation [6], [7], and for the radar operation where
a Neyman-Pearson detector is commonly applied [15], [16].
From [7], the weighting factor of each Ym term in (11) should
be 1/(pmL) for the randomized matrix product approximation.
In the case of the deterministic approach, we use the same
weighting factor, where pm is estimated using the norm of the
m-th row. Hence, let L be the set (with possible repetitions)
of selected elements, the approximation is calculated as

Ỹdes =
∑
m∈L

Ym

pmL
. (12)

B. Target Detection

Let H1 be the hypothesis that a target is present, H0 its
counterpart, we have

|Ydes(i, j)|
D

H1

≷
H0

γ, (13)

where Ydes(i, j) is the element of the i-th row and the j-th
column from Ydes and D is a normalization factor that depends
on the sequence used in x(0); in the case of ZC sequences,
D equals the length of the sequence.

IV. RESULTS

We simulated a sensing experiment using the proposed
system with different values for the number of elements in
the approximation, 0 < L < M . The communication system
is configured for a carrier frequency fc = 4 GHz, with
M = 128 subcarriers evenly spaced by ∆f = 15 kHz and
an OTFS frame consisting of N = 32 blocks. The environ-
ment has P = 10 targets, randomly generated with velocity
vp ∈

[
−c∆f

2fc
; c∆f(N−1)

2Nfc

]
m/s, and range dp ∈

[
0; c

2∆f

]
m,

where c is the constant speed of light. The experiment is
carried out in a Monte Carlo process, with 6000 samples, to
estimate the probability of detection Pd and the probability of
false alarm Pf given different threshold values 0 < γ ≤ 1,
and signal-to-noise ratio (SNR). We use recall as an estimate
for Pd and false positive rate for Pf ,

Pd =
TP

TP + FN
, Pf =

FP
FP + TN

, (14)

where TP, FN, FP, and TN are the true positive, false negative,
false positive, and true negative counts, respectively. Concern-
ing the transmitted sequence x(0), we explore two scenarios,
one with full dynamic, where we use a ZC sequence of length
M and the other with half dynamic, where the sequence has
M/2 elements and x(0) is completed with zero padding.

In Fig. 1, we present the so-called receiver operation curve
(ROC) for the different systems, with L = 16 and SNR = 0 dB
and full dynamic. Here the approximate systems are compared
to one without approximation, indicated as “Complete”.

From Fig. 1, it is clear that despite the reduced number
of elements in the approximation, the systems are capable of
identifying targets with performance comparable to a system
without approximation; however, for smaller values of Pf ,
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Fig. 1. ROC for the different approximation systems, using L = 16 and for
an SNR = 0 dB and full dynamic sequence.

the detection probability degrades slightly using a coarse
approximation.

In Fig. 2, we compare the probability of detection of the
proposed approximations as a function of SNR considering
L = 16, Pf = 0.5% and full dynamic. One observes that all
systems with the approximation have degraded performance
when compared to the Complete system. Furthermore, we
observe a slight increase in performance for the systems using
a deterministic approach if compared to their randomized
counterparts.
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Fig. 2. Probability of target detection, Pd, per SNR level for systems with
Pf = 0.5% and approximations with L = 16 and full dynamic.

Fig. 3 presents the curves of Pd for values of L in a
scenario of SNR = 0 dB and constant Pf = 0.5% and full
dynamic. We observe an increase in Pd for increments in L,
it is also noticeable a slightly better performance in systems
using the deterministic approach in contrast to the ones with
randomized selection. Moreover, the randomized systems are
incapable of reaching the same performance as the Complete
and deterministic systems for high values of L; we credit
this behavior to the pooling with sample replacement in these
randomized systems, where the number of selected elements
is smaller than L.
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Fig. 3. Probability of target detection Pd, per number of elements in the
approximation L, with SNR = 0 dB and Pf = 0.5%.

Lastly, in Fig. 4, we present the curves of Pd for values of
L for sequences using half the dynamic, where the sequence
occupies only half of the M = 256 samples; we also set
the SNR = 0 dB and constant Pf = 0.5%. We observe that
all approximation systems reach a plateau at approximately
L = 128 which is the length of the transmitted sequence. We
also observe that the system det-ℓ2 decreases in performance
as L increases for L > 128, this is due to the reweight that
generates errors in the approximation.
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Fig. 4. Probability of target detection Pd, per number of elements in the
approximation L using half dynamic, with SNR = 0 dB and Pf = 0.5%.

A. Complexity Analysis

Let us analyze the computational cost of (11), which is the
computation we want to approximate. Without any approx-
imation, it requires M2N scalar multiplications and M2N
sums, resulting in a O(M2N) computational complexity. By
considering an approximation using L < M elements, the
computation is reduced to (L + 1)MN multiplications if
we consider the reweight and LMN additions entailing a
computation cost of O((L+ 1)MN).

The randomized algorithms might further reduce the com-
plexity by selecting the same elements multiple times. How-
ever, the norm calculation should be considered in some
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propositions. The ℓ1-norm is a simple sum of the absolute
value of the elements in a row, which results in MN additions,
and the ℓ2-norm takes MN multiplications and N additions.
In the case of the deterministic methods rely on sorting
algorithms that take up to O(M2) in complexity [17].

Moreover, random sampling following a probability distri-
bution may have a considerable computational cost, as the
algorithm described in [18], it takes up to LM multiplications
to perform this task, including an additional O(LM) to the
method’s complexity.

TABLE I
ESTIMATED COMPLEXITY OF EACH METHOD, FOLLOWED BY MAXIMAL
VALUE OF L FOR ACHIEVING COMPLEXITY REDUCTION, NOTED AS L∗ .

Method Complexity L∗

Complete O(M2N) −
rand O((L+ 1)MN) M − 1

rand-ℓ1 O((L+ 1)MN + LM)
(M−1)N

N+1

rand-ℓ2 O((L+ 2)MN + LM)
(M−2)N

N+1

det-ℓ1 O((L+ 1)MN +M2) M − 1− M
N

det-ℓ2 O((L+ 2)MN +M2) M − 2− M
N

Table I summarizes the estimated complexity for each
method. In the sense of computational complexity, the random-
ized algorithms outperform their deterministic counterparts
as the sorting introduces greater complexity than sampling
a value following an arbitrary probability distribution; this
difference shortens as L approximates M . The proposed
algorithms attain a complexity reduction, in comparison to the
Complete product, as long as L < L∗.

V. CONCLUSION

This work proposed a strategy to reduce the computational
cost of sensing in joint communication and sensing systems.
The solution utilizes innovative rank-reduction tools to reduce
the dimension of the correlation matrix required to perform
localization tasks within the ISAC framework. The presented
simulations corroborate that the contribution here is feasible
for practical implementations.

The results show that the additional cost of using any of the
norms to model the probability of term selection in randomized
approximations brings negligible gain. However, the norm
information adds approximately 10% to the target detection
probability in a deterministic proposition when compared
to the randomized methods. This performance increment is
achieved at the cost of computing the ℓ1-norm for each row
and a sorting algorithm, approximately an O(M2) surplus.

The proposed method brings a clear tradeoff between the
amount of computation and the probability of target de-
tection in the DD domain. The simulation was performed
using Python, and the code is available at https://github.com/
felipescoelho/approximation-otfs-sensing.
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