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Department of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway

kimmo.kansanen@ntnu.no, jenny.forbord@gmail.com, johan.suarez@ntnu.no

Abstract—Two-way phase measurements over multiple fre-
quencies can be used to measure the distance between two
radios. An unknown phase offset between the two radios on each
measured frequency must be accommodated by the estimator. We
derive a maximum a-posteriori estimator for the distance in a
channel with a single propagation path from first principles by
treating the unknown phase as a nuisance parameter. We develop
the Modified Cramer-Rao Lower Bound for the estimator and
verify the estimator reaches it. We compare the estimator against
state of the art estimators and their performance bounds. Under
high signal-to-noise ratio the proposed estimator outperforms
all known algorithms by 6dB for Bluetooth Low Energy system
parameters.

Index Terms—Bluetooth Low Energy (BLE), distance estima-
tion, ranging, localization, phase-measurement, Bayesian estima-
tion

I. INTRODUCTION

Positioning has become an integrated part of many wireless
systems due to the demand from many new applications such
as indoor navigation, asset tracking and autonomous vehicle
navigation. A solution integrated with the wireless often
reduces the required number of subsystems, while enabling
the wireless system itself to take advantage of the position
information. Bluetooth Low Energy (BLE) has widespread
adoption due to its affordability and low-power consumption,
and has emerged as a key enabler for proximity-based services
and short distance positioning solutions.

Recent advances in BLE-based distance estimation have
demonstrated that Phase Difference of Arrival (PDoA) [1] can
provide superior performance compared to traditional methods
relying on Received Signal Strength Indicator (RSSI) [2], Time
of Arrival (ToA) [3] or Time Difference of Arrival (TDoA)
estimation [4].

In a free-space scenario, the phase rotation of the propagated
wave is directly proportional to both the frequency and dis-
tance traveled. The Multi-Carrier Phase Difference (MCPD)
algorithm utilizes two narrowband transceivers that measure
this phase shift at two (or more) predetermined frequencies
and estimates the distance between the transceivers based on
these[1]. In [5] it was shown that the approach is compatible
with BLE hardware. In [6] the Fast Fourier Transform (FFT)
of the Power Spectral Density (PSD) of the signal’s phase was
utilized to obtain an improved error performance that reaches
the relevant Cramer Rao Bound.

Other related works that consider a two way signal model
show different approaches to multipath environments. A so-

lution based on the MUSIC estimator [7] can balance be-
tween accuracy and resolving multipath components at the
cost of being computationally intensive. In [8] an enhanced
MUSIC algorithm and a sparse Orthogonal Matching Pursuit
(OMP) algorithm are shown, focusing on lower complexity
and improved performance. The authors of [9] employ a
Support Vector Regression (SVR) approach that outperform
MUSIC in both accuracy and computational efficiency and
achieves decimeter-level precision across diverse scenarios.
The authors of [10] consider narrowband systems with missing
or interfered tones and apply atomic norm minimization and
a Neural Network (NN).

One commonality of all the prior work above is their
treatment of the unknown phase component present in the
measurements due to the phase and clock offset between the
two transceivers. The works above eliminate this phase uncer-
tainty by adding the phases measured by the two transceivers
on each frequency, thereby canceling the unknown offset.

Our contribution is based on treating the unknown phase
offset between the transceivers as a nuisance parameter in
the Bayesian framework. The system and observation model
follows that in [5]. We build on the work within [11], where
the expressions for the estimator were first developed. We
focus on the scenario of a single-path propagation channel and
derive the Bayesian maximum a-posteriori (MAP) estimator
for distance from first principles. We develop a simple gradient
search based approach to find the MAP estimate. We derive
the Modified Cramer-Rao Bound (MCRB) for the problem
and verify that the estimator approaches the bound at high
Signal to Noise Ratio (SNR). Numerical comparison shows
the estimator outperforms all known algorithms by 6dB at
high SNR, while at medium SNR the performance depends
on the search initialization.

II. SYSTEM MODEL

Two radio transceiver units, denoted the Initiator and Re-
flector, stand r meters apart, and thereby the phase rotation of
a sinusoidal electromagnetic signal at frequency f , due to the
time of flight, is given by

ϕ(f, r) = −2πfr/c0 (mod 2π), (1)

where c0 denotes the speed of light.
Our system utilizes a total of Kf frequencies on a regular

grid, separated by ∆fHz, indexed by k ∈ {1 . . .Kf}. As
all the measurements are performed on the baseband, the
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frequencies equal fk = k∆f . The transceiver units have
coarsely synchronized clocks, such that they run at identical
frequencies but with epochs misaligned with ∆t seconds when
the measurement on a frequency is performed. There exists
also an unknown phase difference between the two oscillators.
When the Initiator sends a sinusoidal at frequency fk the phase
at the Reflector is given by

ϕR(fk, r) = −2πfk

(
r

c0
−∆t

)
+ θk (mod 2π) (2)

ϕR(fk, r) = −2πfk

(
r

c0

)
+∆ϕk (mod 2π), (3)

where we have included both clock and local oscillator phase
differences into one phase term ∆ϕk. Respectively, when the
Reflector sends back a sinusoid to the Initiator, and assuming
the oscillators and clocks are stable enough for θk and ∆t to
remain constant over the measurements, the measured phase
at Initiator equals

ϕI(f, r) = −2πfk

(
r

c0

)
−∆ϕk (mod 2π). (4)

Note that ∆ϕk is a common term in (3)-(4), although with
opposite sign. It is assumed that the oscillators cannot maintain
phase control during frequency change, and thereby ∆ϕk is
independent for different frequencies.

With the signal amplitudes at Reflector and Initiator, de-
noted as aR and aI respectively, we can state the model for
the complex signals at Reflector and Initiator, excluding any
observation noise, as

xR(fk, r) = aRe
j(−2πfk(r/c0)+∆ϕk) (5)

xI(fk, r) = aIe
j(−2πfk(r/c0)−∆ϕk). (6)

The Initiator and Reflector perform a measurement on each
frequency, and we denote the observed values as

ỹR(fk) = aR,ke
jθR,k = xR(fk, r) + wR(fk) (7)

ỹI(fk) = aI,ke
jθI,k = xI(fk, r) + wI(fk). (8)

In the above, wR(fk) and wI(fk) denote the white Gaussian
noise at Reflector and Initiator, respectively. The noise has
variance σ2

0 and is assumed i.i.d. between the Reflector and
Initiator, and across different frequencies fk.

The measurements from Reflector are transmitted to the
Initiator for further processing. For the development of the
estimator, we simply use the shorthand yk = (ỹR(fk), ỹI(fk))
for the pair of measurements on frequency fk. For a random
variable x with distribution p(x), we denote Ex [g(x)] =∫
g(x)p(x)dx.

III. MAXIMUM A-POSTERIORI ESTIMATOR FOR DISTANCE

In this section we develop a Maximum A-Posteriori (MAP)
estimator for distance. We begin by expressing the general
form of the Bayesian multi-frequency estimator for our prob-
lem, and then develop the detailed estimator expressions for
the observation model in Eqs. (5)-(6).

A. Bayesian estimator form for two-way measurements: gen-
eral structure

For simplicity, we present the estimator for Kf = 2, and the
general form for arbitrary Kf follows directly. The distance r
has the joint distribution with the observations and nuisance
parameters given by

p(r,y1,y2,∆ϕ1,∆ϕ2)

= p(r,∆ϕ1,∆ϕ2|y1,y2)p(y1,y2)

= p(y1,y2|∆ϕ1,∆ϕ2, r)p(r)p(∆ϕ1)p(∆ϕ2). (9)

We can then express the maximum a-posteriori estimator for
r via marginalization over the nuisance parameters ∆ϕ1 and
∆ϕ2 as

r̂ = argmax
r
p(r|y1,y2) (10)

= argmax
r

E∆ϕ1,∆ϕ2 [p(r,∆ϕ1,∆ϕ2|y1,y2)] . (11)

Applying the two decompositions of the joint distributions in
(9), we can express (11) as

r̂ = argmax
r

E∆ϕ1,∆ϕ2

[
p(y1,y2|∆ϕ1,∆ϕ2, r)p(r)

p(y1,y2)

]
. (12)

Considering that the denominator does not depend on r,
and that the observations, conditioned on r, as well as the
nuisance parameters are independent across frequencies, we
can simplify (12) to

r̂ =argmax
r

E∆ϕ1,∆ϕ2
[p(y1|∆ϕ1, r)p(y2|∆ϕ2, r)p(r)]

= argmax
r

p(r)

× E∆ϕ1
[p(y1|∆ϕ1, r)]E∆ϕ2

[p(y2|∆ϕ2, r)] . (13)

We can now state the generic form for the estimator for any
Kf as a straightforward extension of (13) as

r̂ = argmax
r
p(r)Π

Kf

k=1E∆ϕk
[p(yk|∆ϕk, r)] . (14)

B. Bayesian estimator form for two-way measurements: de-
tailed derivation

Here, we develop the detailed expressions of the distance
estimator (14) for our signal model (7)-(8). We explicitly
assume that the estimator has perfect knowledge of the am-
plitude, and that the channel amplitude behaves reciprocically,
i.e. aR = aI = aR,k = aI,k. We first observe that

p(yk|∆ϕk, r) = p(ỹR(fk), ỹI(fk)|∆ϕk, r)
= p(ỹR(fk)|r,∆ϕk)p(ỹI(fk)|r,∆ϕk) (15)

since, conditioned on r and ∆ϕk, the measurements ỹR(fk)
and ỹI(fk) are independent due to the independence of noise
terms in Eqs. (7) and (8).
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The measurement ỹR(fk) is a complex Gaussian with
distribution [11, Eq. (2.31)]

p(ỹR(fk)|r,∆ϕk) =

=
1√
2πσ2

0

exp

{
−|ỹR(fk)|2 + |ak|2

2σ2
0

}

× exp

2|ak|2 cos
(
− 2πfkr

c0
+∆ϕk − θR,k

)
2σ2

0

 . (16)

Respectively, the measurement ỹI(fk) is a complex Gaussian
with distribution [11, Eq. (2.32)]

p(ỹI(fk)|r,∆ϕk) =

=
1√
2πσ2

0

× exp

{
−|ỹI(fk)|2 + |ak|2

2σ2
0

}

× exp

2|ak|2 cos
(
− 2πfkr

c0
−∆ϕk − θI,k

)
2σ2

0

 . (17)

Finally, we need the a-priori distribution for the phase un-
certainty ∆ϕk. As this is the result of time and phase offset
between the Initiator and Reflector hardware, it is reasonable to
assume maximum uncertainty and use the uniform distribution,
and thereby we have

p(∆ϕk) =
1

2π
∀ k.

Now, using the fact that cos(a) + cos(b) = 2 cos((a +
b)/2) cos((a − b)/2), we can express Eq. (15) as [11, Eq.
(2.34)]

p(yk|∆ϕk, r)

=
1

4π2σ2
0

exp

{
−|ỹR(fk)|2 + 2|ak|2 + |ỹI(fk)|2

2σ2
0

}
× exp

{
2|ak|2

σ2
0

(
cos

(
−2πfkr

c0
− θR,k + θI,k

2

)
× cos

(
∆ϕk − θR,k − θI,k

2

))}
. (18)

Finally, we can integrate over ∆ϕk by [12] [11, Eq. (A.24)]
to obtain

E∆ϕk
[p(yk|∆ϕk, r)]

=
1

2π2σ2
0

exp

{
−|ỹR(fk)|2 + 2|ak|2 + |ỹI(fk)|2

2σ2
0

}
× I0

(
2|ak|2

σ2
0

· cos
(
−2πfkr

c0
− θR,k + θI,k

2

))
, (19)

where I0(·) denotes the modified Bessel function of the first
kind. We can then express the MAP distance estimator as the
product over all frequencies

r̂ = argmax
r
p(r)Π

Kf

k=1p(yk|r)

= argmax
r
p(r)Π

Kf

k=1

I0

(
2γ cos

(
−2πfkr

c0
− θR,k + θI,k

2

))
, (20)

where we have also removed all constants from the product,
and defined the SNR as |ak|2

σ2
0

= γ. Alternatively, we can
express the estimator as

r̂ = argmax
r
M(r), (21)

where the a-posteriori metric is given in the numerically more
interesting form of

M(r) = log p(r)+
Kf∑
k=1

log I0

(
2γ cos

(
−2πfkr

c0
− θR,k + θI,k

2

))
(22)

Computing a value for this estimation metric, in order to
find the maximum, requires the knowledge of aI = aR. In
the single path case considered here, the amplitude is fully
correlated over frequencies and we can estimate the amplitude
from the measurements with a high accuracy, especially if Kf

is large.
In the rest of the paper we concentrate on the estimator

without the the a-priori information, as including the latter is
straightforward.

IV. METRIC SHAPE: BLUETOOTH LOW ENERGY EXAMPLE

Bluetooth Low Energy can perform the two-way measure-
ments as described in Section II. The system parameters
relevant to the algorithm are listed in Table I.

TABLE I
BLE PARAMETERS

Frequency range 2402–2480MHz

Number of carriers Kf 77

Carrier spacing ∆f 1MHz

We reproduce the metric (22) for γ =10dB in Figure 1
for the special case when a(fk) = aR(fk) = aI(fk) and
θR,k = θI,k = 2πfk(r/c0), i.e. under noise-free observations.

Fig. 1. A-Posteriori metric shape, centered around the correct distance
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The experiment reveals that the metric exhibits multiple
local maxima in addition to the global one, with the two
nearest local minima at approximately 2.4 meters. This implies
that a line search will converge to a local maximum depending
on the initialisation.

V. LINE SEARCH FOR ESTIMATE

We can initialize the search with any of the known algo-
rithms in e.g. [1][6] to obtain an initial estimate r0. A simple
gradient iteration would then find in each iteration i the new
estimate

ri+1 = ri − δs
d

dr
M(r).

for some step size δs > 0. We can terminate the iteration
when the gradient d

drM(r) reaches some lower limit δM . Let
us denote

ψ(r) = −2πfkr

c0
− θR,k + θI,k

2

to be able to compactly express the gradient as

d

dr
M(r) = −

2πfk
c0

γI1 (γ cos(ψ(r))) sin(ψ(r))

I0 (γ cos(ψ(r)))
.

By setting manually the step size to δs = 0.01 and terminating
the iteration with δM = 10−3, the algorithm usually finishes
in under 10 iterations at signal to noise ratios above 5dB.
By computing the metric (22) at ±2.4 meters distance from
the gradient search result we can test if the result is a
local maximum. We can then re-initialize the search with an
improved initial estimate if this is the case. We denote the
approach the Local-to-Global Maximum Search (LGMS).

VI. PERFORMANCE BOUNDS

In the case of estimation in the presence of nuisance
parameters the variance of any unbiased estimator is bounded
by the MCRB [13]. We derive the MCRB in Appendix A
following the approach in [14] as

MCRB =
3c20

8γπ2∆2
fKf (Kf + 1)(2Kf + 1)

. (23)

The Cramer-Rao Lower Bound (CRLB) provided in [15], [16]
is the relevant lower bound for our benchmark algorithms
[1][5][6], and is given by

CRLB =
3c20

4γπ2∆2
fKf

(
K2

f − 1
) . (24)

The ratio of (24) and (23) can be derived to equal

2(2Kf + 1)

Kf − 1
≈ 4

where the approximation is tight for large Kf . This implies a
gain by a factor of four in MSE, or a 6dB gain in SNR.

Fig. 2. MSE comparison to known algorithms and bounds

VII. NUMERICAL EXAMPLES

In this section, the behaviour of the Bayesian estimator is
tested with simulations utilizing the BLE parameters given in
Table I. We compare the proposed estimator to state of the art
algorithms in terms of Mean Square Error (MSE), shown in
Figure 2.

The benchmark algorithms include MCPD, Linear Regres-
sion, and the IFFT approach. The MCPD algorithm estimates
the distance via the mean of phase differences between pairs
frequencies [1][5]. The linear regression fits a line on the
unwrapped phase of all the frequencies [1]. The IFFT al-
gorithm performs an Inverse Fast Fourier Transform on the
Power Spectral Density (PSD) of the signal’s phase [6]. The
relevant lower bound for these estimators is the CRLB. The
proposed estimator is initialized with either the MCPD or the
IFFT estimate, and then the search detailed in Section V is
performed (without LGMS). The performence of the MCPD
initialised estimator with the LGMS post-processing is also
reported.

The results indicate that the proposed estimator reaches
the MCRB at high SNR, regardless of the initialization. This
implies it outperforms all currently known algorithms at high
SNR by 6dB.

The superior performance of the IFFT based initialization
allows the estimator to reach the MCRB at approximately 6dB
lower SNR than with the MCPD initialization. The MCPD
initialization often leads to iterations converging to one of the
local maxima closest to the global one. As seen in Figure 2,
the LGMS approach, designed to mitigate the issue, is able to
outperform the plain MCPD initialized algorithm, even though
not reaching the accuracy of the IFFT initialized algorithm.

VIII. CONCLUSIONS

The signals from the two-way measurements are condi-
tionally independent given the distance, and are only coupled
within each frequency by the one unknown phase parameter.
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The Bayesian approach for treating these nuisance parameters
results in an a-posteriori estimation metric that is numerically
easy to deal with, and a simple gradient search finds a maxi-
mum in a limited number of iterations when the initialisation
is sufficiently precise. Avoiding local maxima of the metric at
medium SNR requires sufficient initialisation precision, e.g.
via the IFFT based algorithm[6]. The estimator reaches the
Modified Cramer Rao Bound at high SNR and outperforms
currently known estimators by 6dB.

APPENDIX A
MCRB DERIVATION

The observation vector y =
(
y1 · · · yKf

)T
can be expressed

as

y = s(r,u) +w, (25)

where s = (r,u) is a vector of the noiseless observations,
u =

(
∆ϕ1 · · ·∆ϕKf

)T
is the vector of nuisance parameters,

and w is a white Gaussian noise vector with zero mean
and variance σ2

0 . The vector s =
(
s1 · · · sKf

)T
considers

the noiseless observation from Eqs. (5)-(6) rewritten in their
trigonometric form as pairs of real-valued quantities:

sk(r,u) =

 ak cos(2πfk r
c0

±∆ϕk

)
−ak sin

(
2πfk

r
c0

±∆ϕk

) (26)

The MCRB can be defined as [14]

MCRB(r) =
1

2γEu

[∣∣ ∂
∂r s(r,u)

∣∣2] (27)

The squared norm of the partial derivatives is expressed as∣∣∣∣∂s(r,u)∂r

∣∣∣∣2 =

Kf∑
k=1

(
∂sk(r,u)

∂r

)2

=

Kf∑
k=1

(
4π2∆2

fk
2a2

c20

)(
sin2

(
2π∆fkr

c0
+∆ϕk

)
+cos2

(
2π∆fkr

c0
+∆ϕk

)
+ sin2

(
2π∆fkr

c0
−∆ϕk

)
+cos2

(
2π∆fkr

c0
−∆ϕk

))
. (28)

Using the trigonometric identity sin2 θ + cos2 θ = 1, the
expression reduces to∣∣∣∣∂s(r,u)∂r

∣∣∣∣2 = 2

Kf∑
k=1

(
4π2∆2

fk
2a2

c20

)
=

Kf∑
k=1

8π2∆2
fk

2a2

c20
.

(29)

The expectation with respect to u is not needed and the sum
only concerns one variable, so the MCRB is

MCRB(r) =
c20

16γπ2∆2
fa

2

Kf∑
k=1

k2. (30)

We can now use the sum of squares formula, and after
simplification the expression for the MCRB results in (23).
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