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Abstract—We investigate the problem of vehicle positioning
inside a tunnel, addressed by exploiting 5G cellular uplink signals
received by a single anchor station, e.g., a base station (BS)
or road-side unit (RSU). Leveraging the multipath component
(MPC) characterization introduced in 3GPP Release 17, which
labels each signal arrival as line-of-sight (LOS) or non-line-of-
sight (NLOS), we exploit the MPC identification of received
signal echoes to enhance vehicle positioning. Assuming the
availability of high-definition maps of the environment, we embed
their knowledge with MPC data to dynamically identify signal
reflectors and convert the environment into a network of auxiliary
anchors for positioning. The proposed framework leverages
single-anchor time difference of arrival (SA-TDOA) alongside
angle of arrival (AOA) measurements. In contrast to standard
TDOA approaches, the SA-TDOA measurement does not require
synchronization between the mobile terminal and the anchor,
nor the synchronization among the anchors, thus favoring its
adoption in real-world deployments. A joint tracking of the
vehicle and reflectors is performed by means of an extended
Kalman filter. Simulation results demonstrate the augmentation
capability of the proposed method, which exhibits high accuracy
and robustness in both LOS and NLOS scenarios.

Index Terms—5G positioning, 3GPP Rel-17, multipath, reflec-
tors, SA-TDOA, ZF-MUSIC.

I. INTRODUCTION

High-accuracy positioning in confined environments, such
as indoor spaces or tunnels, is severely affected by non-line-
of-sight (NLOS) conditions and multipath propagation [1].
Traditional algorithms relying on a geometry-based modeling
assuming line-of-sight (LOS) are often degraded by these
effects, as they do not fully exploit the valuable information
inherently present in multipath signals. With the advent of
fifth-generation (5G) technology, a paradigm shift in position-
ing is emerging, thanks to the capability of resolving early
multipath components (MPCs). This unlocks new opportu-
nities for highly accurate positioning, even in challenging
scenarios such as connected automated driving [2]. In this
context, our study addresses a vehicular tunnel scenario, as
illustrated in Fig. 1.

Recently, new techniques have been emerging to convert
multipath into auxiliary information for positioning. In [3],
the authors exploit a pseudo maximum likelihood for direct
positioning estimation to address dynamic multipath environ-
ments. In [4], a weighted least squares approach is applied
for tri-dimensional (3D) positioning using angle of arrival
(AOA) and time of arrival (TOA) measurements, leveraging
virtual base stations (BSs) inferred from a geometric map.
The authors in [5] demonstrate the feasibility of single-anchor

Fig. 1. Tunnel localization scenario with two connected vehicles exploiting
a 5G BSs for positioning.

time difference of arrival (SA-TDOA), a synchronization-
free measurement, by conducting both simulations and field
tests, leveraging a floor plan of the reflecting surfaces (called
reflectors) to operate in NLOS scenarios. Their proposal relies
on a two-step estimate of reflectors and user equipment (UE)
locations. A field test with mmWave 5G is presented in [6],
integrating simultaneous localization and mapping (SLAM)
and device synchronization in a single BS vehicular scenario
using round-trip time (RTT) with AOA and angle of de-
parture (AOD) measurements. However, SA-TDOA was not
considered, and RTT is unsuitable for high-speed scenarios
because of latency constraints. Additionally, several studies
have explored the use of reflective intelligent surfaces (RISs)
to enhance the estimation of virtual anchors [7].

State-of-the-art approaches favor the estimate of virtual
anchors over reflectors due to their fixed positions [8], but their
simplistic assumptions limit real-world applicability. Virtual
anchor estimation is based on the method of images used
in electromagnetics to simplify the analysis of wave reflec-
tions [9]. Literature studies assume plane walls with perfect
reflections, reducing virtual anchor estimation to a mirror
image problem. Realistic scenarios present irregular or curved
surfaces, so the computation of the virtual anchors becomes
challenging and requires case-specific models, limiting the
generalization of the methodology. To overcome this issue, we
propose to estimate the reflectors as an alternative to virtual
anchors. Different from recent works performing joint reflector
and device localization using TOA and AOA measurements
with perfect synchronization [10], our approach better reflects
real-world conditions with asynchronous networks and avoids
the impractical need for large antenna arrays at both sides as
in other single-bounce reflection (SBR) methods [11], [12].
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In this work, we propose a positioning methodology framed
in the 3rd Generation Partnership Project (3GPP) Release
17 to accurately estimate the position of a vehicle traveling
through a tunnel. While 3GPP Release 16 introduced ded-
icated positioning signals, designed to provide sharp cross-
correlation peaks for precise MPC identification [13], 3GPP
Release 17 has enhanced the MPC characterization by labeling
each signal arrival as LOS or NLOS [14]. Moreover, future
BSs and roadside units (RSUs) are expected to access high-
definition (HD) maps [15] generated through 5G SLAM or
LiDAR systems [16]. By combining HD maps with MPC
data, reflectors can be dynamically identified, converting the
environment into a network of auxiliary positioning anchors.

The proposed framework leverages a single BS mounted in
the tunnel, measuring AOA and TDOA of multiple arriving
signals from a transmitting on-board unit (OBU) to localize
the vehicle. We broadly refer to the localizing device at the
roadside as an anchor, as it can be considered both as a
BS and an RSU using the sidelink. The proposed method
exploits SA-TDOA and AOA measurements, the latter are
estimated through a sequential zero-forcing (ZF) multiple
signal classification (MUSIC) algorithm. An extended Kalman
filter (EKF) is then employed to jointly track the positions of
the reflectors and the vehicular UE. This approach exhibits
strong performance and robustness in both LOS and NLOS
scenarios without relying on synchronization, proving to be
a reliable solution for tunnels and other global navigation
satellite systems (GNSS)-denied environments.

The paper is structured as follows: Sec. II presents the sys-
tem and measurement models; Sec. III describes the proposed
methodology; Sec. IV illustrates the simulations and discusses
the results; Sec. V concludes the work.

II. POSITIONING MODEL AND MEASUREMENTS

A. Wireless Channel Model

We consider a time-slotted uplink (UL) single-input
multiple-output (SIMO) orthogonal frequency-division mul-
tiplexing (OFDM) wireless link. The transmit vehicle has a
single antenna, while the receiving anchor has an array of
Nrx = M × N antenna elements. The matrix Hτ ∈ CNrx×1

represents the τ -th tap of the channel response. The received
signal at discrete time t = 1, 2, . . . , T (sampled at symbol time
Ts), is modeled as:

yt =

Tcp−1∑
τ=0

Hτ st−τ + nt ∈ CNrx×1, (1)

where st ∈ C is the transmitted signal at time t and
nt ∈ CNrx×1 is the noise. The SIMO channel is modeled
as a combination of P correlated paths as:

Hτ =

P∑
p=1

αp arx(θrx,p) g(τ − τp), (2)

where each path p may be closely spatially clustered with other
paths and it is characterized by a complex fading amplitude αp,
the receiving antenna array response arx(·) ∈ CNrx×1 to AOAs

θrx,p =
[
ϕrx,p ψrx,p

]⊤
, composed by the azimuth ϕrx,p and

the elevation ψrx,p, and the pulse waveform g(·) delayed by
the path delay τp, with maxp(τp) ≤ Tcp . We assume a block-
fading channel response, with maximum path delay contained
within the cyclic prefix Tcp, and with path delays and AOAs
constant within an OFDM symbol [2].

B. AOA Measurements

To estimate the AOAs from (2) and their uncertain-
ties, we consider the sequential ZF-MUSIC algorithm, a
super-resolution techniques for AOA estimation based on
MUSIC [17]. Let R = E

[
yt y

H
t

]
≃ 1

T

∑T
t=1 yt y

H
t denote

the covariance of yt, with E [·] the expected value and (·)H
the hermitian operator. Consider its eigenvalue decomposition
R = UsΛsUs +UnΛnUn to extract the signal and the noise
subspace eigenvectors, Us and Un, containing respectively the
eigenvector corresponding to the P largest and the Nrx − P
smallest eigenvalues in Λs and Λn. The MUSIC pseudo-
spectrum is given by:

PSMUSIC(θ) =
1

aHrx(θ)Un U
H
n arx(θ)

, (3)

where the steering vector arx(θ) spans over a set of angles,
detecting the directions with the highest signal intensity.

Since the P signal MPCs are correlated, to compensate
for the MUSIC degraded performances, bi-dimensional (2D)
forward-backward spatial smoothing is employed as in [18].
Spatial smoothing takes advantage of the translation properties
of a uniform array by dividing the full array into MsNs

overlapping sub-arrays of dimension M1 ×N1, where M1 =
M −Ms + 1 and N1 = N −Ns + 1. Indicating the received
signal at (m,n)-th sub-array as y

(m,n)
t and its covariance as

Rmn, we define the spatial smoothing covariance matrix as:

Rf =
1

MsNs

Ms∑
m=1

Ns∑
n=1

Rmn, (4)

and its forward-backward version as:

Rfb =
1

2

[
Rf +Ω (Rf)∗ Ω

]
, (5)

where (·)∗ is the complex conjugate, and Ω is a matrix of
appropriate dimension with ones in its anti-diagonal and zeros
elsewhere.

MUSIC accuracy can be enhanced by sequentially removing
previously estimated AOAs using the ZF method as in [19].
Recalling (3), the ZF-MUSIC pseudo-spectrum of the path p
is computed as:

PS
(p)
ZF−MUSIC(θ) = Fp (θ) PSMUSIC(θ), (6)

where Fp(·) is the ZF function defined as Fp(θ) =
N−1

rx aHrx(θ)V
⊥
p arx(θ), and V⊥

p = I − Vp is the orthogonal
projector onto the space spanned by the previously p − 1
estimated AOAs, in which

Vp =

{
I if p = 1,

Ap

(
AH

p Ap

)−1
AH

p otherwise,
(7)
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Fig. 2. ZF-MUSIC spectra over three algorithm iterations, with each spectrum displaying results for time t = 1 (red box) and t = 45 (green box). The peaks
in the middle correspond to the UE, while those on the sides to the reflectors. Each track is indicated with a dashed white line.

and Ap = N−0.5
rx

[
arx(θ̂rx,1) · · · arx(θ̂rx,p−1)

]
. As a last step,

we iteratively estimate the p-th AOA and its associated co-
variance exploiting the pseudo-spectrum nature. The estimated
AOA for the p-th path is θ̂rx,p = argmax

θ
{PS

(p)
ZF−MUSIC(θ)},

while the covariance is obtained by normalizing the pseudo-
spectrum and identifying the ellipse corresponding to the 60%
contour level. The confidence ellipse is then used to compute
the covariance of the AOA measurement. Fig. 2 illustrates the
ZF-MUSIC spectrum of two different time instants over the
algorithm iterations.

C. SA-TDOA Measurements

Assuming UL measurements, let trx and ttx be the receive
and transmit time at the anchor and UE, respectively. The
measured TOA of the p-th at the anchor is:

τp = trx,p − ttx,p + δ =
dp
c

+ δ, (8)

where δ is the clock offset between UE and the anchor,
dp is the p-th path distance, and c the speed of light. The
TOA is assumed to be known with an accuracy that is
inversely proportional with respect to the signal bandwidth.
To compensate for the UE-anchor clock offset, a common
methodology is to compute the TDOA of the same transmitted
signal at two anchors. However, this approach does not solve
the clock offset between the anchors.

To deal with non-synchronous BSs, we consider the so-
called SA-TDOA as the difference between the TOAs of the
different MPCs for a single anchor. Given two generic paths
p ∈ {1, 2} of the same signal received at an anchor located at
the 3D position s, the SA-TDOA is defined as:

∆τ1,2 = τ1 − τ2 =
d1 − d2

c
. (9)

Both paths can have zero or multiple reflections; however,
in this work, we consider a maximum of two paths with
one reflection per path. Therefore, the path distance for a
MPC is given by dp = ∥rp − u∥ + ∥s − rp∥, with rp the
location of the reflector for path p and ∥ · ∥ the Euclidean
norm. The proposed SA-TDOA approach is suited for those
contexts where synchronization among the network nodes can-
not be guaranteed with the precision required by positioning
applications. As an example, it could be exploited in cellular
networks, which are characterized by relaxed constraints on
inter-BSs synchronization [20], [21].
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Fig. 3. Geometrical representation of the localization problem involving UE u
(blue circle), anchor s (red rectangle), reflectors r1 and r2 (on the walls), and
the associated vectors and measurements, all reference to their local coordinate
system.

III. PROPOSED LOCALIZATION METHODOLOGY

We propose to obtain the vehicle localization by estimating
and tracking the joint state x = [u r1 r2]

⊤, including the
3D coordinates of the UE u and the reflectors r1 and r2,
with rp ∈ Pp, with Pp representing the plane of the signal
reflector, assumed to be known from the knowledge of the
HD map. The estimated variables are time-dependent, but in
this section, we omit the dependency on subscript t for an
easier formulation. A schematic overview of the problem with
the associated measurements is reported in Fig. 3, and detailed
in the following.

The path in LOS between the UE and the anchor pro-
vides the AOA θsu = [ϕsu ψsu]

⊤. Additionally, the com-
bination of LOS and MPCs enables the estimation of two
SA-TDOAs measurements: ∆τsr1u = τsr1−τsu and ∆τsr2u =
τsr2 − τsu. Furthermore, the MPCs alone provide: an addi-
tional SA-TDOA between the two reflected paths ∆τsr1r2 =

τsr1 − τsr2 , the AOAs θsrp =
[
ϕsrp ψsrp

]⊤
between the

anchor s and the reflector rp, and the distances given by
the intersection of the planes Pp and the vectors νsrp

=[
cosϕsrp cosψsrp

sinϕsrp cosψsrp
sinψsrp

]⊤
. Given the

tunnel planimetry knowledge, we can also compute the angles
θrpu between the reflectors rp and the UE u from the

reflection νrpu
= νsrp

− 2
(
ν⊤
srp

n⃗p

)
n⃗p of the signal on the
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Fig. 4. Implemented tunnel scenario. (a) Top view. (b) 3D representation in
MATLAB Site Viewer with a raytracer example. The red marker denotes a BS,
while the blue marker is for the vehicle. Beamforming gains at broadside and
multipath propagation are represented as well.

tunnel wall, as:

θrpu =

[
atan

(
νy,rpu, νx,rpu

)
arcsin

νz,rpu

∥νrpu
∥

]⊤
, (10)

where n⃗p is the plane Pp norm vector.
The estimation methodology for x follows the EKF ap-

proach, where we distinguish between the measurements in
LOS and NLOS. The measurement model h(x) can be com-
puted in closed form for both visibility conditions according to
the geometrical relationships previously specified, which leads
to the following definition:

h(x) =


[
θ⊤
su τsr1 θ

⊤
r1u

τsr2 θ
⊤
r2u

∆τsr1u ∆τsr2u

]⊤
if LOS,[

θ⊤
sr1

τsr1θ
⊤
sr2

τsr2 θ
⊤
r1u

θ⊤
r2u

∆τsr1r2

]⊤
if NLOS.

The EKF state model assumes a random walk model for r1
and r2 and a velocity sensor model for u [22].

IV. SIMULATIONS AND RESULTS

To validate our framework, we consider a vehicular tunnel
environment, modeled as a cuboid of dimensions 10m ×
100m × 5m. A single anchor is placed in the middle of the
tunnel at a height of 4.8m. It has two 10× 10 antenna arrays
pointing at opposite directions, as indicated in Fig. 4a, namely
(−90,−30) deg and (90,−30) deg.

The tunnel environment is imported in MATLAB with Site
Viewer, as shown in Fig. 4b, where the 5G UL sounding
reference signal (SRS) is simulated using the 5G Toolbox
and a raytracer, allowing the extraction of AOAs and TOAs.
The simulated 5G physical layer has carrier frequency fc =
3.8GHz, signal bandwidth of 100MHz, and transmit power of

TABLE I
SUMMARY OF UE POSITIONING PERFORMANCE METRICS

SA-JURE SA-JURE TOA+AOA SA-JURE
5G LOS 5G NLOS 5G LOS C-V2X LOS

2D RMSE [m] 0.69 1.18 2.37 1.38
2D MAE [m] 0.57 1.00 1.93 1.14
X-MAE [m] 0.10 0.26 0.37 0.41

Fig. 5. CDF of the 2D positioning error of the experiments.

23 dBm. We assume that the first position (in the open air), the
vehicle velocity along the tunnel, and the height of the vehicle
are available at the BS side, which is a realistic assumption
in a cooperative intelligent transport system (C-ITS) context
leveraging cooperative awareness message (CAM) [23]. We
also assume that the positions of reflectors along the transver-
sal direction with respect to the road (x axis in Fig. 4a) are
known from the knowledge of tunnel planimetry.

Our assessment considers the comparison of the proposed
methodology, which we refer to as single-anchor joint UE and
reflector estimation (SA-JURE), implemented both in LOS
and NLOS-only conditions, with an UL-TOA+AOA single
BS positioning approach without multipath augmentation (note
that this approach is not applicable to NLOS condition). Both
methodologies are applied to the 5G parametrization of the
previous paragraph. This comparison allows the analysis of
the performance degradation given by the BS-UE clock offset
δ, modeled as a truncated Gaussian distribution with vari-
ance 50 ns and support [−100, 100] ns [21]. We also evaluate
our SA-JURE for the current cellular vehicle-to-everything
(C-V2X) standard in LOS, with carrier frequency at 5.9GHz
and 20MHz bandwidth. The considered performance metrics
on UE positioning include the 2D root mean square error
(RMSE), the 2D mean absolute error (MAE), and the MAE
along the x-axis (X-MAE), which is particularly relevant for
lane detection. Their values are summarized in Table I, while
Fig. 5 represents their cumulative density functions (CDFs).

Concerning the comparison of SA-JURE in LOS and NLOS,
we observe that the system demonstrates high robustness to
the loss of direct path information, with a degradation of
approximately 0.5m in RMSE and MAE, and 15 cm in X-
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Fig. 6. Estimated vehicle trajectories by SA-JURE in LOS (green squares) and NLOS (dark red circles). The true trajectory is indicated with the blue line.

MAE. Moreover, we remark a very low X-MAE both in
LOS and NLOS, ensuring a good accuracy for lane detection,
which highly benefits from the knowledge of tunnel walls.
Fig. 6 illustrates the performance of the proposed SA-JURE
in both scenarios. Notice that when the vehicle is right under
the BS, the lack of sufficient measurements prevents accurate
position estimation. Therefore, in this region, the position is
updated solely based on the motion model. The improvement
of SA-JURE over a traditional single BS UL-TOA+AOA
approach is remarkable, with an RMSE gain of 70%. Lastly,
the assessment of SA-JURE implementation according to the
current C-V2X standard with 20MHz bandwidth demonstrates
that the proposed method maintains good localization accuracy
despite the small bandwidth, proving its reliability in position-
ing and highlighting its potential applicability.

V. CONCLUSION AND FUTURE DIRECTIONS

In this work, we propose a positioning methodology that
jointly estimates the position of a UE and the reflectors of the
environment, converting them into auxiliary assistance data.
The approach considers a single BS not affected by synchro-
nization issues as it uses SA-TDOA and AOA measurements,
together with map knowledge and MPC labeling introduced
since 3GPP Release 17. Our findings demonstrate that it is
possible to achieve highly accurate positioning inside a tunnel
exploiting 5G signals in both LOS and NLOS scenarios and
also using the C-V2X technology with spectrum confined
to 20MHz. Future works can consider the extension of the
methodology assessment to more complex scenarios with
irregular environmental planimetry, accounting for multiple
reflections, adding random clutters, and jointly estimating
angle and delay. These improvements will allow to assess the
robustness of our approach under more challenging conditions
similar to real-world tunnel environments.
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