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Abstract—Single-carrier (SC) waveforms offer significant ad-
vantages in high-frequency communications due to their lower
peak-to-average power ratios, mitigating channel and system
impairments. While extensive research has addressed dual-
wideband fading challenges for OFDM systems in mmWave/THz,
the investigation of these effects in SC MIMO transmissions
remains limited. This paper focuses on the time-domain estima-
tion of MIMO channel matrices for point-to-point systems under
dual-wideband fading, encompassing both beam squint and inter-
symbol interference (ISI). We propose a unified framework
that accounts for beam squint at both the transmitter and
receiver, as well as ISI caused by propagation delays, addressing
limitations prevalent in single-antenna studies. A novel mixed-
integer biconvex model provides a flexible channel estimation
framework. It handles diverse delay patterns using a binary
vector and decomposes the channel into path-specific matrices
for smart environment integration, such as sensing and reflecting
surfaces. This semi-parametric approach, estimating delays and
separating path gains/angles, offers advantages over conventional
methods and enables advanced optimization.

Index Terms—MIMO channel estimation, dual-wideband,
beam-squint, intersymbol interference, single-carrier, mmWave

I. INTRODUCTION

The predominant literature for channel estimation in high-
frequency communications, i.e., millimeter wave (mmWave)
and terahertz (THz), with a specific focus on the beam-
squint effect revolves around schemes relying on Orthogonal
Frequency Division Multiplexing (OFDM). In [1], the authors
presented a parametric channel estimator where the delay
and angles were derived for all the subcarriers. While this
approach simplifies the estimation problem, careful selection
of parameters is crucial to avoid ill-conditioning and poten-
tial divergence from the solution. In [2], the dual-wideband
effect was addressed for mmWave multiple-input multiple-
output (MIMO) OFDM for parametric channel estimation. To
avoid unstable initialization, the approach relied on tensor-
based modeling and problem decomposition. A scenario with
single-antenna multiple users was addressed in [3], where
the channel parameters were obtained via the maximum a
posteriori criterion. An adaptive deep learning approach for
THz XL MIMO channel estimation was proposed in [4].
To mitigate wideband effects, the authors suggest extend-
ing their technique by employing parallel streams for each
subcarrier, leveraging the learned codebooks. However, given
that mmWave/THz systems will have large bandwidths, and

thus, many subcarriers, this approach could lead to very high
computational complexity.

Single-carrier (SC) waveforms are known for having lower
peak-to-‘ ratios compared to OFDM which makes them robust
to channel-induced and system impairments. Especially for
high-frequency communications, due to the low output power
and the non-linearity effect induced by the available power
amplifiers (PAs), it is preferable to use SC transmissions rather
than OFDM [5], [6], [7], [8], [9], [10]. In [5], hybrid precoding
for the wideband millimiter wave communications is consid-
ered, proposing a SC-based sparse optimization technique. The
authors in [6] claim that SC modulation with time-domain
equalization, which exhibits the smallest loss concerning the
non-linear distortions due to the PAs. In [9], an SC sparsity-
based algorithm was proposed for indoor THz channel es-
timation, which incorporated high molecular absorption, but
did not consider MIMO systems neither the spatial wideband
effect. Moreover, IEEE 802.15.3d standard for the sub-THz
6G communications, supports SC mode for high data rate
applications [11].

A. Motivation and Contributions

Although the problem of dual-wideband fading (i.e., in-
tersymbol interference and beam squint) for channel esti-
mation have been extensively studied for OFDM systems
in mmWave/THz communications, the investigation of the
former on single-carrier MIMO transmissions has been sig-
nificantly limited [8]. In this paper, we focus on the general
estimation problem of MIMO channel matrices for point-to-
point systems in the time-domain subject to dual-wideband
fading conditions. A unified framework is proposed accounting
for beam-squint effects at both the transmitter (TX) and
receiver (RX), as well as inter-symbol interference caused
by propagation path delays—limitations often overlooked in
single-antenna user studies. A novel mixed-integer biconvex
model introduces a versatile channel estimation framework.
It effectively manages diverse delay patterns through binary
vector representation and decomposes the channel into path-
specific matrices, facilitating seamless integration with smart
environments, including sensing and reflecting surfaces. This
semi-parametric approach explicitly estimates delays while
isolating path gains and angles, providing significant ad-
vantages over traditional methods and enabling the use of
sophisticated optimization techniques.
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II. SYSTEM AND CHANNEL MODELS

We consider a point-to-point THz MIMO communication
system comprising an N -antenna base station (BS) and an M -
antenna user equipment (UE). The antenna elements at both
nodes are structured in ULAs and, for their data communica-
tion, SC transmissions are adopted over a designated carrier
frequency fc resulting in wavelength λc = c/fc with c the
speed of light, a bandwidth W , and a corresponding sampling
period Ts = 1/(2W ).

A. Wideband Channel Time-Domain Model

While the prevalent trend in mmWave/THz channel model-
ing literature typically involves Line-of-Sight (LoS)-dominant
scenarios [12], it is essential to recognize that multipath
wideband channels may emerge in various scenarios [13],
especially within smart wireless environments featured by
reconfigurable metasurfaces [14].

To model multipath M × N MIMO wireless channels,
we adopt the Saleh-Valenzuela channel model that is based
on the time-cluster spatial-lobe approach [15]. To this end,
the t-th time instance effective channel – which includes
the propagation and the TX-RX filters – between each n-th
transmit and each m-th receive antennas, with t = 1, 2, . . . , T ,
n = 1, 2, . . . , N and m = 1, 2, . . . ,M , is given by the discrete
time baseband model [16]:

hm,n(t) =
√
g

Lp∑
ℓ=1

ãℓe
−j2πdm,n,ℓ/λcδ(t− τ̃m,n,ℓ), (1)

where
√
g is the product of the transmit and receive antenna

field radiation patterns in the LoS direction, Lp is the number
of resolvable propagation paths due to multipath propagation;
τ̃m,n,ℓ ≜ d̃m,n,ℓ

c is the total propagation time delay of the ℓ-
th channel path (ℓ = 1, . . . , Lp) between the m-th receiving
and n-th transmitting antennas; d̃m,n,ℓ is the distance between
these antennas for the ℓ-th propagation path, and α̃ℓ is the
instantaneous channel gain for the ℓ-th path.

In the context of far-field communications, where the an-
tenna array sizes are significantly smaller than the distances
between them, the total separation between the n-th transmit
antenna and the m-th receive antenna can be effectively
approximated. This approximation involves summing the dis-
tance from the first transmit antenna to the first receive an-
tenna, denoted as dTX-RX, and the additional distance attributed
to the signal’s travel on the aperture, denoted as dm,n,ℓ.
Specifically, this approximation is expressed as follows:

d̃m,n,ℓ = dTX-RX + dm,n,ℓ, (2)

and consequently the propagation time delay is expressed as:

τ̃TOTAL = τTX-RX + τm,n,l. (3)

The travel distance on the uniform linear array (ULA) aperture
is defined as:

dm,n,ℓ ≜ (m− 1)∆c cosϑTX,ℓ − (n− 1)∆c cosϑRX,ℓ (4)

with ∆c = λc

2 = c
2fc

denoting the antenna separation and
ϑTX,ℓ, ϑRX,ℓ ∈ [−π/2, π/2] are the physical azimuth angles
of arrival and departure, respectively, for a ULA. Putting
all above together, the MIMO channel representation in (1)
becomes:

hm,n(t) =

Lp∑
ℓ=1

aℓ e
−j2π(m−1)θRX,ℓej2π(n−1)θTX,ℓ︸ ︷︷ ︸

≜cm,n,ℓ

δ(t− τ̃m,n,ℓ)

(5)
with αℓ ≜

√
gα̃ℓe

−j2πdTX-RX/λc , θRX,ℓ ≜ ∆c cos(ϑRX,ℓ) is the
normalized angle-of-arrival (AoA) and θTX,ℓ ≜ ∆c cos(ϑTX,ℓ)
is the normalized angle-of-departure (AoD).

In lower frequency ranges, in contrast to mmWave and THz,
and in non-extreme MIMO systems, the carrier frequency fc
does not become significantly small and the antenna index m
does not reach excessively large values, thus, the delay τm,n,ℓ

becomes negligible. However, for MIMO systems, τm,n,ℓ

shifts the sampling of the transmitted signal, creating the
beam-squint effect, where different RX antennas may sample
different transmitted symbols. This sampling shift depends on
the propagation distance dm,n,ℓ, between the n-th TX and m-
th RX antenna elements, along the ℓ-th path.

Note that τm,n,ℓ ∈ R describes the combined beam-squint
effect at the TX and RX. More specifically, this delay is given
by the expression:

τm,n,ℓ =

(
(m− 1)

1

2fc
cosϑRX,ℓ − (n− 1)

1

2fc
cosϑTX,ℓ

)
.

(6)
Since, the AoA and AoD of each ℓ-th propagation path
are bounded within [−π/2, π/2], thus, cosϑRX,ℓ, cosϑTX,ℓ ∈
[0, 1], the aperture delay time can be upper bounded as follows:

τm,n,ℓ ≤
m− 1

2fc
+

n− 1

2fc
≤ M +N − 2

2fc
. (7)

To avoid beam-squint, the sampling period needs to be chosen
to upper bound the propagation delay time, i.e., τm,n,ℓ < Ts.
This setting also sets an upper bound for the number of antenna
elements that will not be affected from the spatial wideband
effect, i.e., it must hold that τm,n,ℓ < Ts ⇒ M+N−2

2fc
< Ts ⇒

M +N < ⌈2fcTs + 2⌉. For instance, with a 150 GHz carrier
frequency and 10 GHz bandwidth, implying a Ts = 5×10−11

sec (50 psec) sampling period, limiting the combined number
of TX and RX antenna elements to M+N = 16 will mitigate
the beam-squint effect. Inevitable, the use of larger antenna
arrays introduces the beam-squint effect, posing a considerable
challenge in the design of wideband systems.

III. PROPOSED CHANNEL ESTIMATION

A. Received Signal Model for Dual-Wideband Fading

The considered point-to-point MIMO communication takes
place on a frame-by-frame basis, where the wireless channel
remains constant during each frame but may change inde-
pendently from one frame to another. Every frame consists
of T time slots, with t = 1, 2, . . . , T , dedicated for channel
estimation, whereas the rest of the frame is used for data
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communication. When the TX sends the symbol qn(t) ∈ C
from n-th antenna, the noiseless reception at the m-th RX
antenna can be expressed as follows [16]:

ŷm,n(t) =

Lp∑
ℓ=1

αℓcm,n,ℓqn(t− τm,n,ℓ), (8)

where to ensure causality, it is considered that t > τm,n,ℓ,
Note that, the involved time-varying signals are discrete,

thus, the time instance t is an integer, denoting the factor that
multiplies the sampling period Ts, i.e., Ts, 2 · Ts . . . , T · Ts.
Similarly, the delay τm,n,ℓ ∈ I is an integer factor that
multiplies the sampling period, shifting the sampling instance,
where I denotes the set of integers. For notational simplicity,
Ts is implicitly assumed in our formulations.

B. Problem Formulation

The introduced time delays pose a significant challenge for
estimating the channel impulse response, as it’s particularly
difficult to accurately determine the propagation delays for
every transmit-receive antenna pair. Our proposed formulation
effectively transforms the problem into a sparse estimation task
by expressing each time-shifted training symbol as an inner
product of a fixed vector and a binary vector.

Proposition 1. Considering that time instance t and the delay
τm,n,ℓ are integers, then each shifted training symbol can be
equivalently expressed as:

qn(t− τm,n,ℓ) ≜ qT
n(t)eτm,n,ℓ

, (9)

where em,n,ℓ ∈ {0, 1}K×1 is a K×1 binary vector with zeros
everywhere except the τm,n,ℓ-th position, i.e., ∥em,n,ℓ∥0 = 1;
K ≜ max(τm,n,ℓ), and

qn(t) ≜ [qn(t−K + 1), . . . , qn(t)]
T ∈ CK×1. (10)

Based on the Proposition 1, the signal ŷm,n(t) in (8) can
be rewritten as follows:

ŷm,n(t) =

Lp∑
ℓ=1

αℓcm,n,ℓqn(t− τm,n,ℓ) (11)

=

Lp∑
ℓ=1

αℓcm,n,ℓq
T
n (t)em,n,ℓ. (12)

While the symbol vector qn(t) ∈ CK×1 is known at the
RX, the binary vector em,n,ℓ has to be recovered for all TX
and RX antenna elements (recall that n = 1, 2, . . . , N and
m = 1, 2, . . . ,M ) as well as for all channel propagation paths
ℓ = 1, 2, . . . , Lp. Equivalently, using vector form expressions
to replace the summation, we get:

ŷm,n(t) = kT
m,nQn(t)em,n, (13)

where we have used the definitions Qn(t) ≜ (ILp
⊗qT

n (t)) ∈
CLp×LpK and

em,n ≜ [eTm,n,1, . . . , e
T
m,n,Lp

]T ∈ {0, 1}LpK×1. (14)

Note that, the channel vector km,n ∈ CLp×1 includes the
vectorized values of the channel gains for all Lp paths, which
is defined as:

km,n ≜ [α1cm,n,1, . . . , αLcm,n,Lp ]
T ∈ CLp×1.

The noiseless received signal for all TX antennas is given
by the superposition ŷm(t) =

∑N
n=1 ŷm,n(t). Using (13), this

baseband signal can be re-expressed as follows:

ŷm(t) =

N∑
n=1

kT
m,nQn(t)em,n = kT

mQ̄(t)em, (15)

where, for the vectorized expression, we have defined the
following quantities:

Q̄(t) ≜ blkdiag(Q1(t), . . . ,QN (t)) ∈ CLpN×LpNK , (16)

em ≜ [eTm,n, . . . , e
T
m,N ]T ∈ {0, 1}LpKN×1, (17)

km ≜ [kT
m,1, . . . ,k

T
m,N ]T ∈ CNLp×1. (18)

Next, for each training instance t = 1, . . . , T , we construct
the receiving vector y(t) ∈ CM×1 with the received training
symbols from all the M RX antennas, as follows:

y(t) = K(IM ⊗ Q̄(t))e+ n(t), (19)

with

K ≜ blkdiag(kT
1 , . . . ,k

T
M ) ∈ CM×MNLp , (20)

e ≜ [eT1 , . . . , e
T
M ]T ∈ {0, 1}MNLK×1, (21)

IM ⊗ Q̄(t) is an MNLp × MNLK matrix, and n(t) ∼
N (0M , σ2IM ).

Gathering T training instances, the input/output relationship
for the considered M × N MIMO system over an Lp-tap
multipath and wideband channel subject to the combined
effects of maximum delay K can be expressed as:

Y = KΦE+N, (22)

where Y ∈ CM×T denotes the matrix with all T received
training signals from all M RX antennas in baseband. The
term N ∈ CM×T represents the complex AWGN matrix that
is distributed as N ∼ N (0M×T , σ

2IM ). The matrix Φ ∈
CMNLp×MNLpKT is built using the training symbols qn’s,
as:

Φ ≜ [IM ⊗ blkdiag
(
(ILp ⊗ qT

1 (1)), . . . , (ILp ⊗ qT
N (1))

)
, . . .

IM ⊗ blkdiag
(
(ILp

⊗ qT
1 (T )), . . . , (ILp

⊗ qT
N (T ))

)
].

(23)

Finally, the binary matrix E ∈ {0, 1}MNLpKT×T in (22) is
introduced to represent the unknown time shifts and is defined
as follows:

E ≜ IT ⊗ e. (24)
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Finally, we formulate our channel estimation objective in-
corporating the dual-wideband effect as the following opti-
mization problem:

OP : min
K,e

∥Y −KΦ(IT ⊗ e)∥2F

s.t. [e]p ∈ {0, 1} ∀p = 1, . . . ,MNLpK,

and K as in (20). (25)

Remark: OP is categorized as a biconvex optimization
problem, wherein the two unknowns, K and e, are involved
through their product in the objective function. More specifi-
cally, the problem is classified as mixed-integer since e is an
element of the binary subset.

C. Solution

An effective approach to tackle a biconvex problem is to
decompose it into two independent subproblems, which can
then be solved separately:

• Given that the channel matrix is perfectly known, denoted
as K∗, solve for the beam-squint vector e:

OP1 : eest ≜ argmin
e

∥Y −K∗Φ(IN ⊗ e)∥2F
s.t. [e]p ∈ {0, 1}. (26)

Problem OP1 can be addressed by replacing the integer
constraint with a sparsity-promoting norm operator, i.e.,
L1-norm into the cost function. To do so, we define
vector ẽ ∈ [0, 1]MNKLp×1 with [ẽ]q ∈ [0, 1] with
q = 1, 2, . . . ,MNKLp, and observing that the number
of the non-zero elements are equal to the product MNL.
Thus, OP1 becomes

min
ẽ

∥ẽ∥1 +
1

2
∥vec(Y)− (I⊗K∗Φ)vec(IT ⊗ ẽ)∥22

s.t.∥ẽ∥2 = MNLp, (27)

which is easily solved using available toolboxes (e.g.,
CVX). Afterwards, a thresholding function is applied to
the output, i.e.,

[eest]q = thres([ẽ]q) ∈ {0, 1}, (28)

with q = 1, 2, . . . ,MNKLp.
• Given that the binary vector eest, solve for K:

min
K

∥Y −KΦ(IN ⊗ eest)∥2F
s.t. K as in (20). (29)

The closed-form solution of the unconstrained problem
(29) is expressed as:

K̃est = Y(ΦEest)
†, (30)

with Eest = IN⊗eest. Subsequently, we impose the block
configuration described in (20),

Kest = P(K̃est). (31)

In this study, we consider an ideal case of perfect initialization,
allowing the two subproblems to be solved in a single step.

However, in a more practical setting, an alternating minimiza-
tion approach would be preferable to progressively reduce
errors arising from imperfect initialization.

The overall computational complexity involves primarily
two key calculations: First, the binary vector eest is calcu-
lated by solving OP1 and thresholding, costing O(MNLp).
Second, the channel matrix K is inverted, leading to a general
complexity of O((MNLp)

3). However, this can be lowered
down to O((MNLp)

3/2) by leveraging its sparse structure.

IV. SIMULATION RESULTS AND DISCUSSION

We assume that the considered point-to-point communica-
tion system takes place for distances larger than the Fraunhofer
distance. According to the SC modulation under consideration,
the TX communicates with the UE via data-carrying frames,
where each frame is composed by T time instances allocated
for the training symbols. Thus, for t = 1, 2, . . . , T , the TX
transmits the training symbols qn(t) ∼ CN (0, 1). The default
system parameters was set to N = M = 32, T = 500. In
our simulation, we employ MUSIC algorithm to estimate the
AoAs, assuming that the channel gains, as well as the number
of the propagation paths (model-order), are perfectly known.
Also, we name as L1 method, the case that we solve (27)
without taking into account the proposed constraint.

In Fig. 1 (left plot), we present the normalized mean square
error (MSE) as a function of the Signal-to-Noise Ratio (SNR
≜ 1/σ2), comparing the performance of standard techniques,
such as Least-squares, OFDM, and MUSIC, with the proposed
approach. The Least-squares method estimates the channel
matrix K and the binary matrix E. However, it is structure-
agnostic and requires a large number of pilot symbols for
accurate estimation. MUSIC, on the other hand, disregards
the channel gain and focuses solely on computing the AoA.
For OFDM, the channel variation across subcarriers limits its
performance, as the available pilots are distributed across all
subcarriers, resulting in constrained accuracy.

Figure 2 illustrates the performance of three methods in
recovering the true values of the binary vector e: Least-
squares, L1, and our proposed technique. Least-squares suf-
fers from significant inaccuracies, while L1 and our method
effectively locate the non-zero elements. However, our method
distinguishes itself by achieving recovered values that are
closer to the ideal unity. To further evaluate the performance,
Figure 1 (right plot) compares the techniques based on the
MSE metric for binary vector estimation over different SNR
values.

Figure 3 showcases the performance of the techniques for
different environments, such as Urban Micro (UMi) and Macro
(UMa), as well as Rural Macro (RMa). Each environment sets
different values for the number of the propagation paths Lp

and the maximum delay time K. Specifically, for UMi we
set the number of propagation paths Lp = 1 and maximum
delay time K = 5; for UMa Lp = 2 and K = 15, while for
RMa Lp = 3 and K = 25. With known bandwidth, sampling
rate, and carrier frequency, the values of the maximum delay
parameter K can be expressed in time units. The results
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Fig. 1. Evaluation of the channel matrix Kest (left plot) and the binary vector
eest (right plot) estimation accuracy.
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Fig. 2. Illustration of the techniques’ ability to accurately identify the non-
zero components, with SNR= 20 dB.

confirm that the technique effectively minimizes MSE in
various environments, and as expected, the MSE scales with
the difficulty of the environment.
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