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ABSTRACT

Accurate pathloss (PL) estimation is essential for optimiz-
ing wireless communication networks. Traditional PL esti-
mation methods struggle with generalization, especially in
complex indoor and outdoor environments. We propose an
MST++ vision transformer-based model integrated with di-
rect wave power estimation as an auxiliary input, enabling
effective line-of-sight detection and improved PL prediction.
Experiments on indoor and outdoor datasets show that our
approach significantly reduces estimation errors compared to
existing deep learning methods, demonstrating its potential
for practical PL estimation tasks.

Index Terms— Pathloss Estimation, Antenna Placement,
Deep Learning, Vision Transformer, Radio Propagation

1. INTRODUCTION

Accurate pathloss (PL) estimation is essential for wireless
network planning, antenna placement, and signal optimiza-
tion. Traditional radio wave propagation models, based on
empirical and analytical approaches, often struggle to gener-
alize in diverse urban and indoor environments [1]. Given the
increasing complexity of environments, deep learning tech-
niques, including convolutional neural networks (CNN) [2, 3,
4] and recently transformer-based methods [5], have emerged
as powerful tools to improve the accuracy of PL estimation.
Recent advances in deep learning have led to state-of-
the-art (SOTA) performance in PL estimation. Pathloss map
network (PMNet) [4], a CNN-based model with an encoder-
decoder architecture, has demonstrated high accuracy. Al-
though CNN-based approaches effectively capture local fea-
tures, they sometimes fail to model long-range spatial cor-
relations and line-of-sight (LOS) conditions. Meanwhile, in
the field of image processing, vision transformer-based meth-
ods [6] have emerged as promising alternatives to traditional
CNN s for various reconstruction tasks [7] due to their global
attention mechanisms. For hyperspectral image reconstruc-
tion, multi-stage spectral-wise transformer (MST)++ [8, 9]
has achieved SOTA performance [8, 10]. Given that PL es-
timation shares similarities with hyperspectral image recon-
struction, both involving the transformation of multichannel
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input into a different output, we apply MST++ to PL estima-
tion and compare its performance with PMNet.

However, existing deep learning-based PL estimation
methods face challenges in capturing long-range spatial cor-
relations and accurately determining whether a LOS path ex-
ists [11]. Distance-based auxiliary information has improved
performance [5], but this method requires image rotation
prior to estimation and does not fully exploit geometric infor-
mation. To address these limitations, we propose an improved
PL estimation framework that integrates direct wave power
estimation with deep learning-based PL estimation. By incor-
porating estimated direct power levels as an auxiliary input,
our approach improves the model’s ability to capture radio
propagation characteristics, leading to enhanced accuracy
across diverse environments. The proposed method simpli-
fies LOS detection and reduces estimation errors, effectively
leveraging the strengths of vision transformer architectures
to model long-range dependencies while maintaining compu-
tational efficiency. Through extensive evaluation on outdoor
[4] and indoor [12] datasets, we demonstrate that our method
achieves superior performance compared to conventional
deep learning approaches.

2. DIRECT POWER LEVEL ESTIMATION

This section introduces the direct power level estimation
framework, which is designed to model the LOS path and the
transmission loss through walls, while excluding reflections
and multipath effects. The goal is to provide an interpretable
estimate of the direct wave component as an auxiliary input
for PL estimation. We consider two scenarios: (1) outdoor
urban environments with building geometries and (2) indoor
layouts with reflectance and transmittance data. For outdoor
environments [4], we input a 2D map with building outlines
and transmitter (Tx) positions (Fig. 1 (middle)); for indoor
environments [12], reflectance and transmittance maps repre-
sent wall locations and material properties (Fig. 2 (middle)).
Estimating PL. maps directly from these inputs is challenging
and the goal is to capture LOS and wall attenuation effects
efficiently with a help of direct power level estimation.

In our proposed method, we first estimate the direct power
level with a consideration of power reduction by transmission
through a building or wall. The direct path from Tx is de-
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Fig. 1. For outdoor pathloss (PL) estimation, the schemat-
ics of direct path estimation (left), the geometry of buildings
(middle), and estimated direct power map (right).

picted in Figs. 1 and 2 (left) and the estimated direct power
level is visualized in Figs. 1 and 2 (right), where brighter col-
ors indicate higher power levels and darker colors indicate
lower power levels. The relative direct power level F' is com-
puted recursively with the small constant width € as:

F(t,r)=F(t,7 — eu) — pw(r — eu,r), ()

where t = (t,t,) and » = (ry,r,) represent the Tx
and receiver positions, respectively. The indicator function
w(x1, x2) returns 1 if a wall exists in the interval [x1, x2) but

not in &, otherwise returning 0. The unit vector u© = ﬁ
points from Tx to the receiver, where || - || denotes the length

of the vector. The reduction constant p accounts for the power
attenuation through the walls. In Tx, F'(¢,t) = 1. Whether
a receiver has an LOS to Tx significantly affects PL estima-
tion, but identifying LOS can require analyzing long-range
correlations, making it challenging even for deep learning-
based methods. The proposed direct power map estimation
simplifies LOS and the attenuated direct wave using Eq. (1).

When the antenna radiation pattern is not isotropic, it can
be incorporated into direct power level estimation as:

’ _ _ 1Tty —ty ™
F'(t,r)=F(t,r) VG(tan (Tx_tx>+2>’ )

where G(6) represents the antenna’s directional gain as a
function of angle 0, and v is a deduction coefficient.

Fig. 3 illustrates the effect of the antenna radiation pattern.
The left figure assumes an isotropic antenna, while the middle
figure shows a power map generated using Eq. (2) based on
the directional pattern in the right figure. Lower gain direc-
tions exhibit reduced power allocation.

3. PATHLOSS MAP PREDICTION

3.1. PMNet

PMNet [4] is an encoder-decoder network with skip connec-
tions [2, 13] !, residual blocks, atrous convolutions, and an

Source codes: https://github.com/abman23/pmnet
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Fig. 2. For indoor PL estimation, the schematics of direct path

estimation (left), the normal incidence reflectance (middle),
and estimated direct map (right).
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Fig. 3. Direct power map estimation when antenna radiation
pattern is not isotopic.
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Fig. 4. Structure of PMNet, where conv, DS, US, and BN
are convolution, downsampling, upsampling, batch normal-
ization, respectively.

hourglass network [14], as shown in Fig. 4, designed to cap-
ture local features in PL estimation tasks.

3.2. MST++

MST++ [8] 2 is a vision transformer-based model [6] with a
sparse, coarse-to-fine structure [9], as shown in Fig. 5. Its

2Source  codes:
MST-plus—-plus

https://github.com/caiyuanhaol998/
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Fig. 5. Structure of multi-stage spectral-wise transformer
(MST). Matrices W, WV, WK W&, and ¢ are learnable.
The height, width, and channels of the input to S-MSA are
H, W,and C. T is the transpose of the matrix and f, is a
position encoding function.

Table 1. The specification of outdoor dataset.
task | #train | # valid | Freq.(GHz)

USC 17114 | 1902 2.5
UCLA | 3398 378 3.0
Boston | 2828 315 3.0

key innovation is spectral-wise multihead self-attention (S-
MSA), which focuses on channel correlations rather than spa-
tial dependencies, reducing computational complexity while
improving spectral feature learning. MST++ follows a hierar-
chical U-Net-like structure called a single-stage spectral-wise
transformer (SST), which consists of an encoder, bottleneck,
and decoder. The encoder extracts image features at different
resolutions, while the decoder reconstructs the PL. map with
skip connections. By stacking multiple SSTs, MST++ pro-
gressively refines image reconstruction, achieving high accu-
racy with a lower computational cost. MST++ can capture
channel correlations using an attention mechanism, which is
essential for accurate PL estimation, because geometrical lo-
cation and antenna power must be integrated. In our imple-
mentation, we integrate direct wave power maps as an auxil-
iary input, allowing the model to efficiently utilize LOS infor-
mation and reduce estimation errors.

4. EXPERIMENT

4.1. Experimental conditions

For the estimation of outdoor PL, we used simulation data
[4] as shown in Table 13. Ray tracing was applied to the geo-
graphical and morphological maps of the University of South-
ern California (USC) campus, the University of California,
Los Angeles (UCLA) campus, and the Boston area. The USC

3 Available at https://github.com/abman23/pmnet

Table 2. The specification of indoor dataset.
task ‘ # train ‘ # valid ‘ Freq.(GHz) ‘ Tx pattern

taskl | 1125 125 0.868 1
task2 | 3375 375 0.868/1.8/3.5 1
task3 | 24975 | 2775 | 0.868/1.8/3.5 5

and UCLA datasets represent light urban environments with
mostly low-rise buildings, while the Boston dataset represents
a dense metropolitan area with high-rise buildings and irreg-
ular street layouts. Each dataset varies in scale, geographical
features, and environmental characteristics. PMNet [4] has
demonstrated SOTA performance on these datasets, making
it a strong baseline model for comparison.

For indoor PL estimation, we used the data from the “first
indoor pathloss radio map prediction challenge” [12]. The
input data consist of three channels: normal incidence re-
flectance and transmittance (both in dB, with O for air) and the
physical distance from Tx to each grid. The output is the PL
map within the building. There are 25 building patterns. The
challenge consists of three tasks. Task 1 evaluates isotropic
antenna patterns, generating 50 radio maps per building. Task
2 extends this to three frequencies. Task 3 extends this to five
different antenna radiation patterns. Since the input image
size varies, we applied data augmentation, including cropping
and flipping. Table 2 shows the specification of the task.

PMNet and MST++ were trained using the Adam opti-
mizer with a learning rate of 0.004, which was halved every
10 epochs. The batch size was set to 16 for outdoor data and
8 for indoor data. The total number of epochs was 30. An
estimated direct power level map was added to the input, re-
sulting in three input channels for outdoor data and four for
indoor data. The direct power map estimation was performed

using the parameters p = 0.05, v = mi?{(5G)'

4.2. Result and discussion (Outdoor)

Table 3 shows the mean square error (MSE) with the origi-
nal input, which does not include direct power level estima-
tion. This serves as a baseline for evaluating the effective-
ness of our proposed auxiliary input. PMNet’s performance
is highly dependent on the amount of training data, resulting
in lower accuracy in the Boston dataset. In contrast, when
sufficient data are available, such as in the USC dataset, PM-
Net achieves high accuracy. MST++ exhibits stable learning
performance across datasets. The reference and estimated PL
map using MST++ for the USC dataset are shown in Figs. 6
(a) and (b). The predicted PL map tends to be excessively
smoothed, resulting in uniformly low PL values throughout
the region.

Table 4 shows the MSE when the proposed auxiliary in-
put is introduced. Both PMNet and MST++ achieve a signif-
icant reduction in MSE. The PL maps estimated by PMNet
and MST++ with the auxiliary input are shown in Figs. 6 (c)
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Table 3. Mean square error (MSE) with original input.

task | PMNet MST++
UCLA | 2.121-1073 2.750- 102

UsSC | 9.750-10~° 6.501-10~3
Boston | 2.538-10~! 1.266-1072

Table 4. MSE with auxiliary input.

task |  PMNet MST++
UCLA | 5.780-107° 7.872-107©

USC | 2.489-107% 1.822-1077
Boston | 1.059-10~% 1.148-107°
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Fig. 6. Reference and estimated PL by PMNet and MST++
for the validation set of USC.

(b) MST++

y

and (d), respectively. In both cases, the predicted PL maps
closely match the reference. Compared to Fig. 6 (b), the aux-
iliary input improves the accuracy of the estimation, particu-
larly in the plaza area in the upper left and right regions where
the lower PL values are better captured. These results con-
firm that the proposed auxiliary input is effective in reducing
MSE. Additionally, with the auxiliary input, PMNet outper-
forms MST++ in terms of accuracy.

4.3. Result and discussion (Indoor)

Table 5 shows the MSE for the validation data without us-
ing Eq. (1) or (2). Similarly to the outdoor case, the per-
formance of PMNet depends on the volume of training data,
while MST++ exhibits stable learning. Fig. 7 shows the ref-
erence (a) and the PL map estimated by MST++ (b). The
predicted PL map is overly smooth and does not capture the
detailed shapes of walls and other structures.

Table 6 presents the results when the proposed auxiliary

Table 5. MSE with original input.

task PMNet MST++

taskl | 2.739-10~2 3.511-10~%
task2 | 4.812-10"* 6.821-10~4
task3 | 5.411-10"* 8.509-10~*

Table 6. MSE with auxiliary input.

task | PMNet MST++
task1 2.761-1073 1.439-107*
task2 4.636-10"* 4.047-107*
task3 (Eq. (1)) 6.203-107* 6.197-107%
task3 (Egs. (1) and (2)) | 3.389-10"*% 4.114-10"*

input is used. The auxiliary input effectively reduces MSE.
Figs. 7 (c) and (d) show the PL maps estimated by PMNet and
MST++, respectively. PMNet still struggles to produce ac-
curate estimations, whereas MST++ achieves high accuracy,
successfully capturing room shapes in low-PL areas. These
results confirm the effectiveness of the proposed method for
indoor PL estimation as well. However, in the lower part of
the image, the reflected waves are not well predicted, indicat-
ing a remaining challenge in handling reflections.

Next, we compare the results for task 3, where different
antenna radiation patterns are considered. Task 3 of Table 6
shows that incorporating antenna directivity (Eqgs. (1) and (2))
achieves a lower MSE compared to those that do not consider
directivity (Eq. (1)). Fig. 8 shows the results for the same an-
tenna location and building structure as in Fig. 7, but with the
radiation pattern of Fig. 3 (c). The reference clearly reflects
the influence of the directivity of the antenna. When direc-
tivity is not considered, the gain remains constant regardless
of direction. In contrast, Figs. 8 (c) and (d) show the results
with directivity taken into account. It can be observed that ar-
eas with lower gain correspond to higher estimated PL values.
These findings demonstrate the importance of considering an-
tenna directivity in PL estimation.

5. CONCLUSION

In this paper, we proposed to improve Pathloss (PL) estima-
tion by integrating direct wave information and leveraging vi-
sion transformer architectures. Our experiments demonstrate
that incorporating direct wave PL estimation significantly im-
proves prediction accuracy in both indoor and outdoor envi-
ronments. The results confirm that our method extends the
applicability of DNN-based PL estimation methods and out-
performs CNN-based approaches. Future work will explore
the integration of low-order reflected waves as auxiliary in-
formation and evaluate the model’s generalization to unseen
environments.
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Fig. 7. Reference and estimated PL map for the validation set
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Fig. 8. Reference and estimated PL map for the validation set
of task 3.
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