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Abstract—Signal detection, especially in crowded frequency
ranges, poses high challenges to any signal analysis solution.
Therefore, in recent years, approaches apply deep learning
object detection methods to the specific signal detection task.
Although in principle huge similarities between object detection
and signal detection exist, applying specific object detection
solutions is not always straightforward though. In this work,
we focus on the specific challenge of domain adaptation for
deep learning signal detection. We adapt ideas from domain
adaptation for object detection and introduce a novel method
called Domain Adaptation with Multi-Class domain classifiers
(DA-MC). This method surpasses the performance of domain
adaptation with class-agnostic domain classifiers. The latter prove
to be inapplicable for signal detection domain adaptation. We
train and evaluate our proposed method on a synthetic test
scenario. Our results prove that the domain shift for signals can
effectively be solved. We furthermore evaluate an actual domain
shift signal scenario using an over-the-air dataset and present
promising improvements over a baseline training.

Index Terms—Detection, Domain Adaptation, Spectrum Mon-
itoring, Deep Learning, Signal Detection.

I. INTRODUCTION

Research in object detection increased in the recent years
drastically. One of the challenges is retrieving sufficient train-
ing data for the neural network. Compared to object classi-
fication, object detection, alongside the images and a class
information, requires so-called bounding boxes corresponding
to the location information of each object in the image. Hence,
creating the training dataset sufficiently is expensive. Further-
more, due to limited amount of training data, the variability of
trained features is limited as well. Thus, performance of the
neural network might drop for unseen data. One example for
such a drop are adverse weather conditions like fog that occur
in unseen data but not in the trained data. In this case, the
detection performance degrades compared to normal weather
conditions. In principle, the performance difference between
the training dataset and the test dataset, referred to as source
domain and target domain, in the following, is known as
domain shift [1], [2].

This domain shift is also relevant if deep learning detection
is applied to the area of signal detection. The terminology
signal detection thereby summarizes methods that identify and
localize an a priori unknown amount of signals in a certain
frequency band. The terminology localization in this sense
refers to identifying the position of a signal in a time-frequency
representation of the frequency band. The localization outcome
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contains information w.r.t. center frequency, bandwidth, and
duration for each signal. One option to visualize frequency
ranges over time is with a spectrogram. It represents the power
of signals in a time and frequency range. Hence, the signal
detection task is similar to object detection since the goal
is to detect and localize signals (objects) in a spectrogram
(image). While there is research regarding signal detection
with deep learning [3], [4], to the best of our knowledge
no solutions exist that focus on the specific field of domain
shift in deep learning based signal detection. In this work,
we aim at solving the domain adaptation problem for signal
detection in the high frequency range. We introduce our novel
method called Domain Adaptation with Multi-Class domain
classifiers (DA-MC). This domain adaptation method applies
a multi-class domain classifier for signal detection, which to
our best knowledge is the first of its kind. We introduce a
synthetic test scenario to show that the selected method is
principally applicable to signal detection. We show the results
for this test scenario as well as the results for an over-the-air
recording scenario.

II. STATE OF THE ART

In recent years, multiple publications addressed the topic of
domain adaptation for deep learning object detection. We sort
these publications into four major categories and summarize
their main ideas shortly in the following.

1) Adversarial Learning Methods: The first method forces
the neural network to learn domain-invariant features during
training [1]. This is achieved with a Domain Classifier Net-
work (DCN) that is attached to the original detection network
during training. On the one hand, the DCN is supposed to
distinguish between input from the source domain versus input
from the target domain and therefore learns domain-variant
features. On the other hand, the detection network should learn
domain-invariant features to detect the incoming data from the
source and target domain equally well. The latter is achieved
with an adversarial training strategy, which is explained in
section IV with more details.

2) Self-Learning Methods: With this method, a neural
network is trained with labeled data from the source domain.
Then, the trained network is utilized to estimate corresponding
labels for images, which are then added to the training dataset
[6]. The crucial part for self-learning is the training data
selection, which is selected based on a threshold [7], [8].
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3) Image-To-Image Translation Methods: This approach
generates target-like images from the source domain images
with a Generative Adversarial Network (GAN) [9]. These
target-like images are then added to the training dataset.

4) Mean Teacher Methods: This method works with two
identical networks, referred to as teacher and student net-
work. They are trained with similar, but slightly modified,
images [10]. During the training, the student model is op-
timized with a loss function that punishes deviations from
predictions of the teacher model. In turn, the teacher model is
updated incrementally with the weights of the student model.

The approaches of all four categories have in common that
they are developed for object detection networks with real
world images. Hence, not every method is applicable for signal
detection, since spectrograms cannot be treated as images and
common image data augmentation methods, such as changing
the saturation or rotating the image, are ineffective. The image-
to-image translation and mean teacher methods modify images
by means of data augmentation. Therefore, these two methods
are not applicable for signal detection. Self-learning methods
are suitable for signals, since they do not rely on generated
data. However, the base performance of the neural network
must be sufficient to obtain reliable bounding boxes for the
new target domain images. In contrast, the adversarial learning
method can be applied without restrictions, since it aims to
generalize the feature space between source and target domain.
Therefore, we focus on the adversarial learning approach,
which is the most suitable method for signal detection.

III. DATASET GENERATION

For the dataset generation we collect multiple individual
signals in time domain for each signal category. These signals
are then positioned randomly w.r.t. the frequency and trans-
formed into the frequency domain. The monochromatic power
levels of the spectrogram are subsequently converted into an
RGB image. In a last step, the corresponding bounding box
and class labels are generated accordingly. We define these
class labels from the signal categories in the high frequency
range. We train with up to ten signal categories to ensure
the principal functionality of the training. For the domain
adaptation we focus on the following signal categories: Am-
plitude Modulation (AM), Single-Sideband modulation (SSB),
Frequency-Shift-Keying with two tones (FSK2), signals with
continuous rectangular power distribution (RECT) and signals
with multi-channel characteristics (MLTC).

IV. DOMAIN ADAPTATION FOR SIGNAL DETECTION

Adversarial learning methods train a DCN such that it is
able to distinguish between images from a labeled source
dataset, referred to as Dg in the following, and images from a
unlabeled target dataset, referred to as Dy . We thereby focus
on semi-supervised domain adaptation, i.e., labels only exist
for images in the source dataset Ds.

The domain adaptation approaches based on adversarial
learning require at least one DCN [11], [12]. However,
employing a class-agnostic domain classifier that does not

distinguish between various classes can lead to a misalignment
of features as shown in Fig. 1. Instead of matching the features
of the AM class from Dg to the features of the AM class
in D7, they are erroneously adapted to the features of the
SSB class in the target dataset since a class-agnostic domain
classifier can not learn distinct features for each class. This
limitation is addressed in [13] for a classification network.
There, the authors introduce a multi-class domain classifier
where each class has its dedicated domain classifier. Therefore,
the domain classifiers learn specific features for each class.

Fig. 1. Feature alignment can fail with a class-agnostic domain classifier [13].

In this work, we propose a domain adaptation network
with multi-class domain classifiers for signal detection. The
overview structure of the newly proposed architecture is
shown in Fig. 2. We use a modified YOLOv4 architecture
as backbone (marked in green in Fig. 2) and as detection
head of the detection network [14]. The output of the modified
YOLOV4 architecture contains beside others a varying amount
of bounding box estimates and, per box, a corresponding class
estimate. The boxes are subsequently fed into a Region of
Interest (Rol) pooling layer. This layer, marked in light red
in Fig. 2, extracts and maps the features at the positions of
the bounding box estimates to predefined dimensions [12]. Its
output is subsequently sorted per class by the class estimates
that correspond to the respective bounding boxes. We further
introduce a domain classifier for each of the K signal classes in
the network. Each of the multi-class domain classifiers thereby
consists of the following blocks, highlighted in light blue: the
Gradient Reversal Layer (GRL), two fully connected layers
(FC) and the Domain Classifier Layer (DCL). To enhance
the stability of the network against domain shifts at different
scales, we use three feature maps from the network at different
scales for each class as in [11]. This results in 3 x K domain
classifiers.

The loss of the described architecture in Fig. 2 consists
of two parts: The domain adaptation loss and the detection
loss. First, we introduce the domain adaptation loss Lg, for
all domain classifiers in (1)

Lia=—Y_ [Dilog pff + (1 - D;) log(1—piH] (1)
i,7,k,l

Here, I, (I = 1,2,3) represents a multi-class domain clas-
sifier at the 1-th feature map scale. The k-th domain clas-
sifier, £k = 1,2, ..., K represents the domain classifier of the
k-th class within one multi-class domain classifier [. Then,
pf]l € [0,1] is the predicted probability of the k-th domain
classifier. This probability is per bounding box estimate j
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Fig. 2. Proposed Domain Adaptation with Multi-Class domain classifiers architecture. The domain adaptive part is utilized during the training process.

within the image . Furthermore, D; is the domain label of
the i-th image that is known during train time. In particular,
D; =0 marks images from the source domain and D; =1
marks the corresponding target domain images.

The domain classifier network learns domain-invariant fea-
tures by minimizing the loss in (1). However, the same loss
must be maximized for the detection network to learn the
common features of the source and target domain. This con-
trary goal is achieved with the GRL [5], which is positioned
between the domain classifiers and the backbone. During
forward propagation, the GRL works as an identity operation
by passing the incoming features through. However, during
backpropagation, the domain adaptation loss Lg, is minimized,
beginning at the DCL until the GRL, to learn domain-invariant
features for the domain classifier. Then, the sign of the gradient
is flipped at the GRL, which effectively maximizes Lq4, for the
backbone network during the backpropagation. Therefore, the
backbone is adjusted to learn indistinguishable features.

The second part of the total loss consists of the detection
loss Lget, which is the default loss from YOLOv4 [14]. The
detection loss Ly is only trained with the dataset Ds from the
source domain, while the domain adaptation loss Ly, is trained
with Dg and D. Hence, the total loss for the domain adaptive
network is L = Lge + A Lga, where A € [0,1] is a balancing
factor to control the influence of the domain classifier network
and is set to A = 1 during our experiments.

V. EXPERIMENTS
A. Experiment Setup

We present results for our newly proposed signal detection
domain adaptation network in the following.

1) Training Dataset: Besides the aforementioned datasets,
there is also the so-called oracle target dataset D+ o, which
combines D7 with corresponding labels. This dataset serves
only to compare our network with a so called oracle. This
oracle has perfect knowledge about the content of the target
data during training time, thus representing the best result
possible for the domain adaptation process. There are three
combinations for the dataset utilized during the training:

e Baseline: Training with labeled source dataset Ds only

o Domain Adaptation: Training with labeled source dataset
Dgs and unlabeled target dataset D

e Oracle: Training with labeled source dataset Ds and
labeled target dataset D o

2) Dataset Content: In order to evaluate the performance
of our network, we use two ways to gain the signal content.
The resulting datasets strongly differ from their principle area
of application. The first pair of source and target datasets,
Ds.,n and Drg,, respectively, is a set with signals that
are synthetically generated. Its main goal is to introduce
controllable signal domain shifts. Thus, any progress w.r.t. a
domain shift problem can easily be verified since the expected
improvements are a priori known. We use Dsg, and D7z,
to prove the principal functionality of our presented ap-
proach. A detailed description of the synthetic dataset content
will follow in subsubsection V-Bl. In order to show results
that are comparable to results that might be achieved in a
real-world use case, there is a second pair of source and target
datasets, Ds., and D, , respectively, with spectrograms
from over-the-air recordings. Here, we give a more detailed
description in subsubsection V-B2.

3) Test Dataset: For testing the performance, we need an
additional pair of test datasets Ds Testsyx aDd DT Testgyns
respectively, for the synthetic dataset. While the Ilatter is
required for the actual performance evaluation, the former
solely serves as reference for the graphical representation of
the performance. We use an additional test dataset Destqpa
for the over-the-air recordings. Additionally, we manually
create the bounding boxes for the signals in these recordings.

B. Results of Experiments

In this section, we present the performance of our newly
developed deep learning domain adaptation signal detection
network. The performance of the different training runs is eval-
uated with two metrics, namely recall (R) and precision (P).
Recall is defined as the ratio of all correct detections divided
by all existing objects, while precision is defined as all correct
detections divided by all detections. Furthermore, we utilize
the dimension reduction method t-SNE [15] for the feature
visualization of the classes to compare the different methods.
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We first evaluate the results for the synthetic dataset pair
Ds.n and D, respectively. By doing so, we can ensure
the principal capabilities of the domain adaptation method.
Then, we test our domain adaptation approach on the over-
the-air dataset D7, .,. The results for the latter represent
achievable gains for the actual signal detection task. Before
we present concrete figures for the datasets Dy, and Do, ,
we first give a precise description of the content of D, .

1) Synthetic Dataset: The synthetic dataset consists of
signals within the spectrograms that are analytically generated.
This means, both, the analog as well as the digital signals, are
generated with the communications toolbox from MATLAB.
The synthetic datasets are generated with these signals as
explained in section III. In order to obtain controllable signal
domain shifts, there are a variety of effects that can be
introduced. One option is to add artificial features to a signal
class in the source dataset Ds,.,, Which do not occur in the
corresponding signal class from the target dataset D, . For
example, a diagonal or vertical line can be added to a signal,
as shown in Fig. 3 for an FSK2 and an AM signal.

~«— Frequency —

Fig. 3. Example spectrogram for Dsgy (top) and D7y (bottom).

While artificial lines exist in both signals in the spectrogram
data from Dgs,, ., they are missing in the corresponding spec-
trogram from D, . We choose this artificial domain shift
scenario for two reasons: First, without domain adaptation, the
neural network focuses on these lines during the training as
these are simple features to differentiate these signals from
other classes. This makes it an ideal example for proving
the general functionality of our proposed approach. Second,
the artificial domain shift is different for each class, which
introduces an additional difficulty for a domain adaptation
process with a class-agnostic domain classifier. Thus, it allows
us to investigate the functionality of the multi-class domain
adaptation mechanism.

In order to investigate the influence of the multi-class do-
main adaptation part, we compare the results of our approach
with an approach that uses only one class-agnostic domain
classifier. In particular, the results of Domain Adaptation
with Class-Agnostic domain classifier (DA-CA) and DA-MC
are evaluated alongside the baseline and oracle training. The
results for the synthetic test dataset D7 Testsyy are shown in
Table I. We focus on the FSK2 and AM signal in this test
scenario since only these two classes experience a domain
shift. For the evaluation, we use recall and precision as metrics
(cf. subsection V-B). The baseline training already achieves
high scores for the respective signal categories. The DA-CA
improves for both classes overall compared to the baseline

training. However, the DA-MC surpasses even the performance
of the DA-CA and reaches a score close to the oracle training.

TABLE I
BASELINE, DA-CA, DA-MC, AND ORACLE RESULTS FOR D7 Testgyy -
FSK2 AM All
Method R P R P R P
Baseline | 95.8 | 779 | 73.3 | 92.8 85.2 83.3
DA-CA 100 | 855 | 75.2 | 94.0 | 88.3 88.7
DA-MC 100 | 98.3 | 88.6 100 | 94.6 99.1
Oracle 100 100 | 94.3 100 | 97.3 | 100.0

In Fig. 4 the t-SNE plots for the various training variations
(cf. subsubsection V-Al) are shown for the synthetic test
datasets Ds Testgyn aNd D7 Testgyy > Fespectively. The optimal
result for a domain adaptation approach contains source and
target data that cannot be distinguished by the network. For
the t-SNE plot, this means that the feature positions for both,
source and target dataset mix up inseparable. In Fig. 4a
the plot for the baseline training is illustrated. Within each
class, source and target samples can strictly be separated by
their features. Then, the t-SNE plot in Fig. 4b shows the
training with DA-CA. The features are not mixed for the FSK2
class and only slightly mixed for the AM class despite the
results in Table 1. The class-agnostic domain classifier can
not learn the domain shifts of both classes. In contrast, the
DA-MC method in Fig. 4c mixes up the source and target
samples. This indicates that the features are not distinguishable
for the neural network. Thus, the training with multi-class
domain classifiers is superior compared to the training with
class-agnostic domain classifier.

2) Over-the-Air Recording Dataset: The source dataset
Dsqpa 1s similarly generated to the synthetic dataset. How-
ever, instead of generating the signals analytically, we filter
the individual signals from wideband over-the-air recordings.
In contrast, the target dataset D, contains wideband spec-
trograms with a priori unknown amount of signals. Both, the
position and the category of the signals are not controllable.
This leads to several challenges with the target dataset D7, .,
compared to the source dataset Dg,.,. First, the uncontrol-
lable amount of signals can lead to collisions between signals.
Fig. 5 illustrates examples for the training data (top image)
and the over-the-air recording (bottom image). While there are
collisions in the over-the-air recording scenario, the signals
are separated in the training data scenario. Therefore, the
detection task is more difficult for Dy, since features of
multiple signals are mixed in the spectrogram due to these
collisions. Second, there are unknown signal categories, i.e.,
signals that are not contained in the training data, in Dy, .
These unknown signals confuse the neural network, which
erroneously detects them as one of the existing categories.
Third, in the over-the-air recordings distortions can occur that
result in additional power levels in the spectrogram, i.e., due
to faulty hardware. Fourth, poor filter design at the transmitter
leads to visible filter edges of signals. Overall, these factors
contribute to the existing domain shift between the source
dataset Ds, ., and the target dataset D7, .

Results for the over-the-air recording test dataset Dregtopa
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Fig. 4. t-SNE comparison of baseline, DA-CA and DA-MC for two different domain shifts.
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Fig. 5. Example spectrogram for Ds.., (top) and D7y, (bottom).

are shown in Table II. In this test scenario we focus on MLTC,
RECT, FSK2, and SSB as signal categories. Furthermore, we
select the DA-MC method, which yields the overall best results
for the synthetic dataset. The DA-MC method improves the
detection performance for all classes. In particular, the score
of MLTC and RECT gets close to the oracle training. Hence,
our approach resolves domain shift effects for these classes
without extensive labeling efforts. While FSK2 and SSB also
improve the performance compared to the baseline training,
there is a larger gap between DA-MC and the oracle training
if compared to MLTC or RECT. One reason for the minor
improvement could be their baseline score. In particular, we
can observe that the recall for SSB and FSK2 in the baseline
training is lower compared to the other two classes. Our
domain adaptation method relies on detections, which are less
reliable for SSB and FSK2. Overall, the performance increases
with our domain adaptation approach for signal detection.

TABLE 11
BASELINE, DA-MC, AND ORACLE RESULTS FOR DTestOTA.
MLTC RECT FSK2 SSB
Method R P R P R P R P
Baseline | 75.2 | 83.0 | 89.7 | 85.5 | 58.7 | 89.6 | 555 | 95.3
DA-MC 89.9 | 80.2 | 92.7 | 879 | 63.5 | 88.7 | 60.6 | 94.4
Oracle 91.9 | 856 | 92.7 | 88.5 | 780 | 91.3 | 82.0 | 84.6

VI. CONCLUSION

In this paper, we addressed the domain adaptation challenge
for signal detection in the high frequency range. As starting
point, we compared four domain adaptation categories and
selected the adversarial training method as the most suit-
able approach for the signal detection task. We introduced a
novel adversarial domain adaptation network with multi-class
domain classifiers for signal detection that uses a modified

YOLOvV4 network as its backbone. We created synthetic and
over-the-air datasets for the evaluation process. Our evalua-
tions with the synthetic test scenario show that the domain
shift problem can be solved for the signal detection task
while reducing the labeling efforts significantly. We surpass
both, the performance of the baseline training as well as the
performance of the domain adaptation method with a class-
agnostic classifier and achieve a performance close to the ora-
cle training. Furthermore, we achieve remarkable performance
gains for tests with an over-the-air dataset D7, .
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