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Abstract—The integration of Reconfigurable Intelligent Sur-
faces (RISs) into wireless systems presents a transformative
opportunity to redefine communication strategies by actively
shaping the propagation environment. Despite the significant
potential of RISs to enhance the spectral efficiency and the
spatial coverage, their implementation faces several challenges,
such as channel estimation. In this paper, we propose a novel
framework for Channel Estimation for RISs via Tensor-ESPRIT
in DFT Beamspace (CERISE). By exploiting the sparsity of the
beamformed channels and introducing a two-stage estimation
scheme, CERISE can achieve high resolution estimates of the
target parameters. The performance of CERISE is verified via
numerical simulations, proving its ability to provide reliable
Channel State Information (CSI).

I. INTRODUCTION

Reconfigurable Intelligent Surfaces (RISs) have recently
emerged as a transformative technology in wireless communi-
cations. At the same time, they have a long history, originating
from early studies on smart reflect-arrays and passive beam-
forming structures [1]. The integration of RISs into modern
wireless networks brings several notable advantages, such
as enhancing signal coverage, improving spectral efficiency,
and enabling fine-grained control over the radio environment.
This can be implemented via dynamical adjustments of the
phases of the impinging signals at the RIS [2]. Multiple works
have highlighted the advantages of including RISs in the
environment, such as the ”square law” [3], which results in a
scaled received power of signals by the square of the number
of elements present at the RIS. These features render RISs
an attractive enabler for realizing smart radio environments
in 6G and beyond wireless networks, especially in massive
machine-type communications (mMTC) and enhanced mobile
broadband (EMB) scenarios.

However, there are several significant challenges on the way
to a practical deployment. Among them, we can distinguish the
problem of acquisition of CSI. It is crucial for optimizing the
phase shift coefficients of the RIS to ensure reliable communi-
cations. At the same time, conventional techniques for channel
estimation are inapplicable due to the high dimensionality of
the channels and the passive nature of RISs [4].

There exists a variety of channel estimation methods based
on different approaches such as Expectation-Maximization
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(EM) or Maximum-Likelihood-Estimation (MLE) [5], Com-
pressive Sensing (CS) [6] or heuristic approaches, e.g.,
Monopulse [7]. However, there is only a limited number of
studies in this field covering subspace-based techniques for
channel estimation.

In this paper, we propose a gridless channel estimation
algorithm based on ESPRIT in DFT beamspace for a Millime-
ter Wave (mmWave) multiple-input-multiple-output (MIMO)
system operating in the far field. To this end, a generic
Tensor-ESPRIT in DFT beamspace algorithm is developed.
The proposed algorithm focuses on a single-user scenario,
aiming to exploit the structure of the RIS-assisted channels for
an efficient estimation of the target parameters. It comprises
two-stages allowing to substantially reduce training overhead
and computational complexity.

This paper has the following structure. First, we introduce
a data model for the tensor representation of the measured
signals. Then we review subspace-based DoA/DoD estima-
tion techniques and explain the proposed algorithm. Lastly,
numerical results are presented to demonstrate the system’s
performance.

II. DATA MODEL

We consider a single-user (SU) multiple-input-multiple-
output (MIMO) communication system assisted by an RIS. It
operates in the far field and is equipped with multiple transmit
and receive antennas, MT and MR, respectively, and an RIS
with MRIS elements. The notation in this paper follows the
form of [8]. The array elements at the transmitter, receiver, and
RIS are arranged in the form of uniform linear arrays (ULAs).
It is further assumed that a Line-of-Sight (LOS) connection
between the transmitter and the receiver is unavailable, but
they are communicating via the RIS visible by both sides.
In this case, the channel tensor H ∈ CMR×MT×MRIS can be
expressed as

H = aR ○ a
∗

T ○ a
∗

RIS ○ ρ = I4,1 ×1 aR ×2 a
∗

T ×3 a
∗

RIS ×4 ρ, (1)

where ρ = αβ ∈ C denotes the overall path gain coefficient,
α is the path gain of the channel from the transmitter to the
RIS, and β is the path gain of the channel from the RIS to
the receiver. The resulting rank-one structure is assumed to
be known a priori. We assume a quasi-stationary environment
such that ρ stays constant during training. The vector ar(µr) =

[ 1 ejµr ⋯ ej(Mr−1)µr ]
T
∈ CMr×1, r ∈ {R, T, RIS} is the

array steering vector with a Vandermonde structure. The
spatial frequency µr =

2π
λCR

∆sinφr is defined by the angle of
arrival (AoA) or departure (AoD) φr, and ∆ = λCR/2 denotes

2012ISBN: 978-9-46-459362-4 EUSIPCO 2025



the spacing between two array elements which is defined by
the wavelength λCR.

A visual interpretation of the system model is given in
Figure 1a, where {imp, ex} denotes the impinging and
excitation directions.

The effective channel including the RIS can be expressed
as

He = aR a
ex
RIS

H
Φaimp

RIS
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

hRIS

aH
T ∈ C

MR×MT ,
(2)

where Φ ∈ CMRIS×MRIS defines the RIS configuration. It can be
written as

Φ = diag(ϕ), ϕ = [ β1e
jα1 ⋯ βMRISe

jαMRIS ]
T
∈ CMRIS , (3)

where we assume that there is no coupling between the
individual RIS elements. Additionally, due to the previous far
field and LOS assumptions, the ϕ in (3) can be simplified to

ϕ = [ 1 ejα ⋯ ej(MRIS−1)α ]
T
, (4)

where we have assumed βi = 1, and a progressive structure
of the phases, i.e., αi = (i − 1)α, ∀i = {1, . . . ,MRIS}. This
definition for the RIS coefficients allows us to reformulate
hRIS in (2) using the Hadamard product as

aex
RIS

H
Φaimp

RIS = ϕ
T
(aex

RIS
∗

⊙ aimp
RIS) = ϕ

Ta∗RIS, (5)

where aRIS = a(µRIS) is the combined RIS steering vector,
with a Vandermonde structure. The obtained RIS spatial
frequency µRIS = µex

RIS − µ
imp
RIS denotes the difference between

the spatial frequencies of the impinging and excitation signal.
The direction of the excitation signal after the RIS can be
controlled by choosing an appropriate configuration in (5). In
this work, we use sets of DFT beamformers for precoding,
decoding, and RIS coefficients.

The qth DFT beamformer in the rth mode is represented by
the scaled qth column of a DFT matrix Wr ∈ CMr×Br , r ∈
{R, T, RIS} such that

wr,q = e
j(Mr−1

2 )γr,q [ 1 e−jγr,q e−j2γr,q ⋯ e−j(Mr−1)γr,q ]
T
,

(6)
where γr,q =

2π
Mr
(q−1), ∀q = {1, . . . ,Mr} is the center of the

qth beam. The scalar Br denotes the number of used beams.
For the case of Br =Mr, the matrix Wr is a full size scaled
DFT matrix.

The mirrored reflection of the impinging signal at the RIS,
which is defined by Snell’s law, corresponds to the RIS
configuration of a DFT beamformer with q = 1. It is illustrated
in Figure 1b. All other beams deflect the excitation direction
with a beam-specific offset γr,q from the mirrored response.

For the proposed training scheme, we send pilots to acquire
CSI. The received signal yi,j,k[l] ∈ C for a pilot symbol
si,j,k[l] ∈ C at the ith beam at the receiver, jth beam at the
transmitter, kth beam at the RIS, and lth training frame can be
written as

yi,j,k[l] =w
H
R,i (ρaRw

T
RIS,ka

∗

RISa
H
T wT,jsi,j,k[l] +ni,j,k[l])

=H ×1 wH
R,i ×2 w

T
T,j ×3 w

T
RIS,k ×4 si,j,k[l] +w

H
R,ini,j,k[l],

where {wR,i,wT,j ,wRIS,k} ∈ CMr×1, r ∈ {R, T, RIS} are
the beamforming vectors at the receiver, transmitter, and RIS
drawn from the DFT beamforming matrices WR,WT,WRIS ∈

CMr×Br , respectively. The scalars Mr,Br denote the number
of sensor elements and beams in each mode, respectively,
and i = {1, . . . ,BR}, j = {1, . . . ,BT}, k = {1, . . . ,BRIS}, l =
{1, . . . ,NTF}. The scalar NTF is the number of training frames,
where each training frame comprises a full iteration cycle
through all beam triplets, and ni,j,k[l] ∈ CMR×1 is the zero
mean circularly symmetric complex Gaussian (ZMCSCG)
noise vector with mean E{n} = 0MR and covariance matrix
E{nnH} = σ2

nIMR .
We assume a complex-valued, constant-modulus sequence

of mutually known pilots similar to [8] as

∣sn∣
2
=

Ps

MT
, (7)

such that ∥wT,jsn∥
2
2 = Ps, where Ps =

P
N

is the power per
pilot symbol, and the total training power is P . The scalar
N = NTFBRBTBRIS is the total number of pilot symbols, and
n = {1, . . . ,N} denotes the index of the current pilot symbol.

The demodulated signal ỹi,j,k[l] = yi,j,k[l] ⋅ s
∗MT

Ps
can be

written as

ỹi,j,k[l] =H ×1 wH
R,i ×2 w

T
T,j ×3 w

T
RIS,k + ñi,j,k[l], (8)

where ñi,j,k[l] =w
H
R,ini,j,k[l]s

∗

i,j,k[l]
MT
Ps

is the effective noise
after demodulation. The collection of demodulated signals for
all pilots during the lth training frame can be represented as
Ỹ l ∈ CBR×BT×BRIS which can be written as

Ỹ l =H ×1 WH
R ×2 W

T
T ×3 W

T
RIS + Ñ l (9)

= I4,1 ×1 W
H
R aR ×2 W

T
T a∗T ×3 W

T
RISa

∗

RIS
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B

×4ρ + Ñ l,

where Ñ l ∈ CBR×BT×BRIS is the effective noise tensor after de-
modulation. The beamspace steering tensor B ∈ CBR×BT×BRIS

consists of the beamspace steering vectors br ∈ CBr×1, ∀r ∈
{R, T, RIS} such that

B = I3,1 ×1 bR ×2 b
∗

T ×3 b
∗

RIS, (10)

where
br =W

H
r ar, ∀r ∈ {R, T, RIS}. (11)

III. REVIEW OF ALGORITHMS

A. 1D Standard Beamspace ESPRIT

Standard ESPRIT in DFT Beamspace ESPRIT (SBE) ex-
ploits the shift invariance equation for parameter estimation
as shown in [9]

G1,B bω =G2,B b, (12)

where ω = ejµ contains the phase information of the source
impinging on the antenna array. For this work, we use the sim-
plified notation for a single source. The vector b ∈ CB denotes
the beamspace steering vector, and the Gi,B ∈ C(B−1)×B , ∀i ∈
{1, 2} denote the beamspace selection matrices [10]. We
assume that only B beams which comprise the Sector of
Interest (SoI) are used for parameter estimation. As a result,
SBE operates on a reduced dimensional signal space, which
allows to lower the computational complexity and the number
of training symbols. However, it requires prior knowledge
about the SoI.

Furthermore, the beamspace steering vector b ∈ CB is not
available during estimation, but it can be substituted by a
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(a) Relationships between impinging, mirrored and
desired excitation signal at the RIS.

(b) Interpretation of beamforming coeffi-
cients deflecting from the mirrored response
at the RIS.

Fig. 1: System Model of a RIS assisted Channel.

vector uS ∈ CB , sharing the same signal subspace with b,
such that b = uSt, where t ∈ C. The invariance equation can
then be expressed as G1,BuSω =G2,BuS , where B denotes
the number of selected beams. The scalar ω can be computed
by, e.g., Least Squares, ω = (G1,BuS)

+G2,BuS ∈ C. The
target parameters µ can then be estimated from ω where the
target parameters are obtained as µ̂ = arg{ω}.
B. Maximum Power Beam Algorithm

The Maximum Power Beam Algorithm (MPB), also referred
to as Beam Sweeping [11], returns the spatial frequency
corresponding to the center of the beam with the largest power.
In the case where multiple snapshots are available, additional
pre-processing is included, which accumulates the received
power across different snapshots.
C. Tensor Power Method

The Tensor Power Method (TPM) is an effective algorithm
to compute the rank-one Canonical Polyadic Decomposition
(CPD) [12], [13]. One iteration of the TPM algorithm can be
written as

fv = Y
V

⨉
r=1
r≠v

fH
r

∥fr∥
2
2

, ∀v = {1, . . . , V }, (13)

where V denotes the number of modes of Y ∈ CM1×⋯×MV , and
fr ∈ CMr×1 is the factor vector of the rth mode. An initial set
of factor vectors can either be initialized with prior knowledge
or generated randomly. Since the resulting factor vectors span
the signal subspaces of the tensor, the TPM can be seen as a
low complexity replacement for a rank-one HOSVD.

The TPM algorithm includes two stopping criteria, a max-
imum number of iterations IterMax and a threshold for the
change of the relative error between two iterations δrel =
∣δt−δt−1∣

δ0
, where δt = ∥Y − Ŷt∥F

is the decomposition error
at the tth iteration, Ŷt is the reconstructed tensor, and δ0 is
the decomposition error given the initialization vectors.

IV. PROPOSED SOLUTION

In this section, we describe the main stages of the pro-
posed CERISE algorithm. It comprises a two stage procedure
consisting of a coarse estimation stage and a fine estimation
stage. For the coarse estimation, we use aperture reduction to
reduce the total number of beams covering the full beamspace.
For RIS elements, this task is non-trivial, however, recently

proposed methods such as using an RIS with absorption
properties [14] allow to realize this part of the algorithm.
As a result, the width of the beams is broader, allowing a
full coverage of the spatial spectrum with fewer beams, i.e.,
M (crs)

r < Mr, ∀r ∈ {R, T, RIS}. We assume that there is
a total power P available for the entire training procedure,
which is split among the coarse and fine stages, such that P =
P (crs)+P (fine). The pilot symbols are then normalized as shown
in (7) with the stage specific power and number of training
symbols of the coarse stage. After acquiring the demodulated
measurement tensor Ỹ

(crs)
∈ CM (crs)

R ×M (crs)
T ×M (crs)

RIS ×N
(crs)
TF , an initial

coarse estimate of target parameters µ̂(crs)
r,I is calculated for each

mode r ∈ {R, T, RIS} via MPB.
These estimates are then further refined via TPM with the

following preprocessing. We use the initial coarse estimates
to define a coarse SoI, by selecting the B(crs)

r closest beams
to µ̂(crs)

r,I in each mode. Given this set of beam indices of the
coarse SoI in each mode, we select a subset of demodulated
measurements Ỹ

(crs)
sub ∈ CB(crs)

R ×B(crs)
T ×B(crs)

RIS ×N
(crs)
TF for further pro-

cessing via TPM.
The factor vectors are initialized in each mode with the

corresponding beamspace steering vectors b̂(crs)
r,I (µ̂

(crs)
r,I ) (11).

The refined coarse estimates of the target parameters µ̂(crs)
r,II are

then obtained by applying SBE on each factor vector.
The resulting estimates after the coarse stage µ̂(crs)

r,II are used
to specify a SoI for training in the fine estimation stage for
each mode. In the fine estimation stage, the full size aperture
is used in each mode to regain the fine grid of beams. We
select B(fine)

r beams for the SoI, where the SoI in the rth mode
is centered around the closest beam to µ̂(crs)

r,II such that

γ̂r,q ← q̂ = argmin
q
∣γr,q − µ̂

(crs)
r,II ∣. (14)

After acquiring the measurement tensor in the fine estima-
tion stage Ỹ

(fine)
∈ CB(fine)

R ×B(fine)
T ×B(fine)

RIS ×N
(fine)
TF , beamspace steering

vectors (11) based on the coarse estimate are computed and
used as initialization for the TPM similarly to the coarse
stage. Fine estimates of the target parameters µ̂(fine)

r are then
obtained after applying SBE on the resulting approximates of
the beamspace steering vectors.

A summary of CERISE is given in Algorithm 1.
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Algorithm 1 Two Stage Channel Estimation “CERISE”

Coarse Est. Stage: Reduce aperture to M (crs)
r elements ∀r ∈ {R, T, RIS}

1: Pilot transmission: Accumulate demodulated symbols Ỹ (crs)

2: Obtain initial estimates: µ̂(crs)
r, I ←MPB(Ỹ (crs)

)

3: Sectorization: Ỹ (crs)
sub ← Select B(crs)

r beams around µ̂(crs)
r, I

4: Tensor Decomposition:
5: b̂(crs)

r, I ← Calculate TPM initializations based on µ̂(crs)
r, I (11)

6: [b̂(crs)
R, II b̂

(crs)
T, II b̂(crs)

RIS, II] ← TPM(Ỹ (crs)
sub ,{b̂(crs)

r, I })

7: Refine estimates: µ̂(crs)
r, II ← SBE({b̂(crs)

r, II}), ∀r ∈ {R, T, RIS}
Fine Est. Stage: Use full aperture in each mode ∀r ∈ {R, T, RIS}

8: Sectorization: Select B(fine)
r Beams around µ̂(crs)

r, II by (14)

9: Pilot transmission: Accumulate demodulated symbols Ỹ (fine)

10: Tensor Decomposition:
11: b̂(fine)

r, I ← Calculate TPM initializations based on µ̂(crs)
r, II (11)

12: [b̂(fine)
R, II b̂(fine)

T, II b̂(fine)
RIS, II] ← TPM(Ỹ (fine)

,{b̂(fine)
r, I })

13: Obtain final estimates:µ̂(fine)
r ← SBE({b̂(fine)

r, II }) ∀r ∈ {R, T, RIS}

V. SIMULATION RESULTS

In this section, we present selected simulation results. These
results reflect the performance of the estimators, which are
measured in terms of the Root Mean Squared Error (RMSE).
It is defined for each mode r ∈ {R, T, RIS} as

RMSEr =

√

E{(µr − µ̂r,i)
2}, (15)

and the total RMSE is given by

RMSE =

¿
Á
ÁÀ

1

3
∑

r={R, T, RIS}
RMSE2

r. (16)

They are compared with the Cramer Rao Lower Bound
(CRLB) [15]. While recognizing that metrics of the spectral
efficiency are more suitable to indicate performance, they
exceed the scope of this paper.

The covered setup in this work contains MR = 32, MT =

64, NRIS = 128 elements at the receiver, transmitter, and RIS,
respectively, and NTF = 1 training frame, with the chosen path
gain ρ = 1. We define B(crs)

r = 3, ∀r ∈ {R, T, RIS} for the
coarse SoI. The convergence criteria for the TPM are set to
IterMax = 5 and δrel = 10

−6. The available total power P = 1 is
split evenly on the coarse and the fine estimation stage, i.e.,
P (crs) = P (fine) = 0.5, if not stated otherwise, and the SNR is
given as SNR = P

σ2
n

, where σ2
n denotes the noise power at the

receiver before decoding.
First, the results for the coarse estimation stage are shown

in Figure 2. The presented accuracy includes estimates for
all modes: R, T, and RIS. In this setup, the entire power is
allocated to the coarse estimation step, and different estimation
approaches are compared. The coarse estimator named MPB
stops the coarse estimation after the initial MPB estimate.
In the low-SNR regime, both MPB and TPM+SBE with MPB
initialization exhibit a similar accuracy. However, TPM+SBE
surpasses the error floor of MPB due to its gridless nature,
whereas the accuracy of MPB depends on the grid resolution.
The initialization of the factor vectors plays a crucial role.
Random initialization not only increases the required SNR for
a given accuracy but also introduces inconsistencies, as the

TABLE I: Approximate Complexity of CERISE.

MPB ≈ (7NTF + 1)BRBTBRIS

TPM ≈ 48IterBRBTBRISNTF

SBE, per mode ≈ 2(B − 1)3

TPM may fail to converge reliably. This leads to non-uniform
distortions in the RMSE curve, even at higher SNRs.

In Figure 3, the accuracy of the proposed algorithm for
estimating the RIS spatial frequency is shown after the fine
estimation stage. Additionally, the accuracies of the fine es-
timation with the MPB coarse estimator and the estimation
with perfect SoI information are provided for comparison. In
low-to-medium SNR regimes, the CERISE estimator achieves
a similar accuracy regardless of the SoI estimation method.
Enhanced processing at the coarse estimation stage accelerates
the approach of the estimator’s curve toward the accuracy
asymptote defined by perfect knowledge of the SoI in terms of
the SNR, but introduces a moderate additional complexity as
shown in Table I. Even though the power per pilot in the fine
estimation stage is lower, it has a comparable performance to
a purely coarse estimation. Furthermore, introducing an SoI
significantly reduces the dimensionality of the signal space,
leading to a much lower training overhead.

In Figure 4, the impact of varying the number of fine beams
on the accuracy is analyzed. The figure compares the RMSE of
RIS spatial frequency estimates, assuming perfect knowledge
of the SoI. A smaller number of beams results in an increased
power per pilot signal (7), thereby achieving a lower error
asymptote. However, in practical scenarios, where a priori
knowledge might not be available, choosing too few beams
might result in higher errors, as the small number of beams
might not cover the actual spatial position of the target.

Finally, Figure 5 presents the accuracy profiles for all modes
under different power distributions between the coarse and fine
estimation stages. The comparisons in Figure 3 have shown
that the performance of the coarse estimator is critical for
fine estimation, which can also be observed here. Assigning
more power to the coarse estimation stage enables earlier
divergence from the error ceiling at smaller SNRs. Allocating
more resources ensures a higher accuracy in estimating the
Sector of Interest, which normally limits the performance
of CERISE in low SNR regimes. However, since the error
asymptote in high-SNR regimes is primarily determined by the
power allocated to pilots in the fine estimation stage, excessive
power allocation to the coarse estimation stage can degrade the
overall accuracy.

Based on the presented simulation results, we can confirm
the ability of CERISE to obtain accurate estimates of target
parameters in different configurations.

VI. CONCLUSIONS

In this paper, a novel two stage channel estimation algorithm
for reconfigurable intelligent surface (RIS)-assisted channels
CERISE is presented. It is based on the estimation of signal
parameters via rotational invariance techniques (ESPRIT) in
DFT beamspace. Numerical results have proven the ability
of CERISE to provide high resolution parameter estimates.
This two stage estimation approach offers strong performance
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Fig. 2: Coarse estimation RMSE in all modes. NTrials = 10000, ρ = 1,
[µR, µT, µRIS] = [2.11, 1.05, 2.19], [MR,MT,NRIS] = [8, 16, 32],
NTF = 1, P = 1, IterMax = 5, δrel = 10

−6.

Fig. 3: RMSE for fine estimation (FE) and coarse estimation (CE).
NTrials = 10000, ρ = 1, [µR, µT, µRIS] = [2.11, 1.05, 2.19],
[MR,MT,NRIS] = [32, 64, 128], N (crs)

TF = N (fine)
TF = 1, P (crs) =

P (fine) = 0.5, IterMax = 5, δrel = 10−6, [M (crs)
R ,M (crs)

T ,M (crs)
RIS ] =

[8,16,32], B(fine)
r = 4, ∀r ∈ {R, T, RIS}

Fig. 4: Fine estimation (FE) accuracy for RIS with varying num-
ber of fine beams given perfect SoI knowledge. NTrials = 10000,
ρ = 1, [µR, µT, µRIS] = [2.11, 1.05, 2.19], [MR,MT,NRIS] =

[32, 64, 128], N (crs)
TF = N (fine)

TF = 1, P (crs) = P (fine) = 0.5, IterMax = 5,
[M (crs)

R ,M (crs)
T ,M (crs)

RIS ] = [8,16,32], B
(fine)
r = 4, ∀r ∈ {R, T}

Fig. 5: Fine estimation (FE) accuracy for total setup with
varying power distribution on coarse and fine estimation stage.
NTrials = 10000, ρ = 1, [µR, µT, µRIS] = [2.11, 1.05, 2.19],
[MR,MT,NRIS] = [32, 64, 128], N

(crs)
TF = N (fine)

TF = 1, IterMax = 5,
[M (crs)

R ,M (crs)
T ,M (crs)

RIS ] = [8,16,32], B
(fine)
r = 4, ∀r ∈ {R, T, RIS}

improvements in medium to high SNR regimes closely ap-
proaching the CRLB, while maintaining a low computational
complexity.
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