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Abstract—This paper utilizes the properties of type-based
multiple access (TBMA) to investigate its effectiveness as a robust
approach for over-the-air computation (AirComp) in the presence
of Byzantine attacks, this is, adversarial strategies where mali-
cious nodes intentionally distort their transmissions to corrupt
the aggregated result. Unlike classical direct aggregation (DA)
AirComp, which aggregates data in the amplitude of the signals
and are highly vulnerable to attacks, TBMA distributes data
over multiple radio resources, enabling the receiver to construct
a histogram representation of the transmitted data. This structure
allows the integration of classical robust estimators and supports
the computation of diverse functions beyond the arithmetic mean,
which is not feasible with DA. Through extensive simulations, we
demonstrate that robust TBMA significantly outperforms DA,
maintaining high accuracy even under adversarial conditions,
and showcases its applicability in federated learning (FEEL)
scenarios. Additionally, TBMA reduces channel state information
(CSI) requirements, lowers energy consumption, and enhances
resiliency by leveraging the diversity of the transmitted data.
These results establish TBMA as a scalable and robust solution
for AirComp, paving the way for secure and efficient aggregation
in next-generation networks.

I. INTRODUCTION

The advent of highly complex and heterogeneous networks
has created an urgent need for high-speed data transfer pro-
tocols capable of handling massive data volumes while en-
abling real-time processing and data-driven decision-making.
To address these demands, future communication networks
must integrate distributed computation directly into the com-
munication process, as seen in applications like Artificial
Intelligence (AI), which require continuous aggregation of vast
data from distributed devices to train and update models. These
massive data flows call for efficient and scalable techniques,
such as over-the-air computation (AirComp), which leverages
the waveform superposition property of wireless channels to
aggregate data directly over the air. By aligning simultaneous
transmissions to compute a desired function of the transmitted
signals, AirComp minimizes latency and radio resource us-
age, making it particularly relevant for large-scale distributed
systems like wireless sensor networks and federated learning
(FEEL), where high-speed data aggregation is crucial.

While AirComp offers significant advantages in terms of ef-
ficiency and scalability, it also introduces critical security con-
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cerns [1]. Since the receiver does not access individual device
transmissions, AirComp inherently preserves privacy, which is
a desirable feature in many applications. However, this same
characteristic makes it challenging to identify malicious behav-
ior, as the aggregated result conceals individual contributions.
Consequently, AirComp is particularly vulnerable to Byzan-
tine attacks, where adversaries deliberately manipulate their
transmissions to corrupt the aggregated outcome. Addressing
these vulnerabilities is essential to ensure the robustness and
reliability of AirComp in adversarial environments.

The existing literature on Byzantine attacks and outlier de-
tection in distributed computing has largely focused on general
frameworks [2], with limited attention to their application in
AirComp. The only proposed solution under the AirComp
framework is presented in [3], where the authors introduce
an algorithm operating between the physical and link layers.
Specifically, devices are divided into subsets, which transmit
data concurrently within each group. Then, the geometric
median across groups is computed as a robust estimate of the
mean. However, this approach is limited to FEEL scenarios
and only considers the computation of the arithmetic mean.
Additionally, the algorithm is not fully in the physical layer, as
it requires scheduling transmissions among users. Another line
of research explores robust precoders for AirComp [4]-[7],
addressing channel imperfections by accounting for channel
uncertainty in a probabilistic sense. However, these works do
not address resiliency to adversarial attacks, leaving a critical
gap in the robustness of AirComp.

All previous works on AirComp operate under a direct
aggregation (DA) framework, where the additive property of
the wireless channel is used to achieve superposition, resulting
in the receiver obtaining a single aggregated signal. To achieve
resiliency against attacks with DA in the physical layer, the
function estimate has to be robust. However, the performance
is heavily dependent on the data distribution and the nature of
the attacks, limiting their effectiveness.

In this work, we propose leveraging a type-based multiple
access (TBMA) for AirComp instead. In TBMA, devices
transmit in a single radio resource (i.e., time, frequency or
code) according to their data, allowing the receiver to construct
a histogram representation of the transmitted data. It has been
previously shown the benefits of TBMA over DA in terms of
power consumption and channel state information (CSI) [1].
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In this work we show that the diversity provided by multiple
radio resources can be exploited at the receiver to identify and
isolate attacks targeting specific resources. Moreover, TBMA
supports a broader range of function computations compared
to DA, as it decouples the attack detection and compensation
from the function computation.

The contributions of this work are as follows:

1) We propose a novel physical-layer framework for ro-
bust aggregation in TBMA-based AirComp, enhancing
resilience against adversarial attacks.

2) TBMA enables the integration of both parametric and
non-parametric estimators, providing flexibility and gen-
erality.

3) Unlike most works that assume the sample average, our
scheme allows the computation of robust estimates for
a variety of functions, which we evaluate.

4) We compare TBMA with DA and demonstrate the
effectiveness of robust aggregation with TBMA in a
FEEL use case, highlighting its practical applicability.

The remaining part of the paper proceeds as follows: Section
II introduces aggregation techniques for AirComp and presents
the system model. Section III introduces robust techniques for
TBMA and section IV assesses their performance in different
scenarios. Section V concludes the paper.

II. SYSTEM MODEL

Consider a wireless network with K distributed devices (i.e.,
transmitters) and a single server (i.e., receiver). Each device
k € K has local data sj (e.g., sensor measurements or local
computations) and the goal of the network is to compute a
function of the data f(sq,. .., sxk). For this purpose, AirComp
is exploited to efficiently use the communication resources.

The traditional approach for AirComp is encoding the
information in the amplitude of the transmitted waveform.
Assuming perfect synchronization and channel compensation,
the additive nature of the wireless channel aggregates the
signals at the input of the receiver. To compute the sample
average, the receiver only needs to divide the amplitude of
the received waveform by the number of transmitters. To
compute other functions, the transmitters and receiver need
to process the transmitted and received signals, respectively,
a procedure termed nomographic function representation [8].
These techniques, either analog or digital, fall under the
umbrella of DA, as the aggregation occurs over a single
communication resource. Alternatively, for robust AirComp
we propose using TBMA.

A. Type-based multiple access

In TBMA [9] there is a one-to-one mapping between L
different measurements and L orthogonal radio resources.
For the sake of simplicity we assume that s, € [1,..., L],
which can be achieved via linear or nonlinear mappings (e.g.,
quantization). Thus, in TBMA, radio resources are allocated
according to data, not users, enabling superposition when users
have the same measurement. The signal transmitted by user &
is ¢(sy). For instance, in (1), TBMA can be implemented with

M -ary frequency shift keying (FSK) when there is a bijective
mapping between data and frequency resources; alternatively,
TBMA can be implemented with pulse position modulation
(PPM), where there is a bijective mapping between the data
and the time shifts of a pulse.

akejQ“Sk”/T for M-FSK
P(sK) =

) 1
aped2m(n=s1)/T  for PPM M

In (1), T is the duration of the signal and n =0,..., N — 1
is the discrete time index. The amplitude a; € C is used
to compensate channel imperfections. Although these are two
examples of how TBMA can be implemented, this technique
always requires an orthogonal support of signals. Furthermore,
notice that each user uses a single from the L available radio
resource.

At the receiver side, the signal at resource £ € [1,..., L] is
ye =Y hrep(si) +we, (2)
keK

where hy, € C is the channel between user k and the receiver
at resource ¢, and w, is the additive white Gaussian noise
(AWGN) sample at resource ¢ with power o2. Notice that
©(sxk) # 0 only when s, = £. We assume perfect CSI, which
can be achieved via channel inversion as ay = h}/|hg|*.
We refer the reader to [9] for the consideration of channel
knowledge and effects on error estimation, as the purpose
of this paper is to show how TBMA provides robustness
towards Byzantine attacks. Additional techniques for channel
compensation can be designed on top of the proposed design.

Computing the matched filter for the set of y, and normal-
izing by K results in

1
r= K[

where the (-th entry in p corresponds to the fraction of
devices Ky/K that transmitted at resource ¢ (i.e., s, = {)
and 10, is Gaussian noise with power 62 = 02/ K2. Provided
that K > L, which is reasonable in AirComp scenarios, r
corresponds to a nosy version of the empirical measure p,
this is, a histogram or type of the distributed data s.

From the noisy type r, many of the functions of interest can
be computed by aggregating the L signals with an aggregation
function V. For instance,

% 25:1 lry

\I/ =
(x) {exp (% ZeL:1 r¢ln 6) for geometric mean

Ky, Kp)T 4 [wy,...,0.)  =p+Ww, 3)

for arithmetic mean
“4)

As mentioned previously, amplitude-based AirComp re-
quires non-linear pre-processing and post-processing to com-
pute functions beyond the arithmetic mean. Conversely,
TBMA computes the function over the type r. Besides (4),
other functions such as the minimum or maximum reduce to
classical detection problems for TBMA. Furthermore, from the
communication perspective, one of the most relevant benefits
of TBMA over DA is the saving in energy consumption.
For instance, to compute the geometric mean with DA, each
device transmits In(sy), which may have a large impact in
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the transmitted power. Conversely, as shown in (4), TBMA
only chooses the radio resource and the transmitted power is
independent of the function.

The figure of merit is the normalized mean squared error
(NMSE) between the distributed data and the function esti-
mated at the receiver side:

|f(s1,.

o SK) — U (ry,. .. |2

f(Sl,.. .,SK)Q

NMSE = 7L

®)

B. Byzantine attacks

In a Byzantine attack there is a set of users that try to corrupt
the aggregation by sending malicious data. In the context of
AirComp and, particularly, in TBMA we define a set of users
M that attack a specific radio resource to alter the distribution
of p. We assume that the attackers are coordinated to attack
the same radio resource ¢, which represents the worst case
scenario in terms of (5). We define the received signal in the
presence of attackers as

Je=>_ hiep(sk) + Y hnep(€) + wy, (6)

ke meM
and the corrupted type as

f':%[ .,KL_l]T+%[O,...,MZ,...
where Mj is the number of attackers at resource ¢. Without
loss of generality we assume that M < K, as allowing the
number of attackers to exceed the number of legitimate devices
would result in most of the data being controlled by attackers,
leading to a completely compromised system. Although not
considered in this work, attackers can be more severe if they
adjust the transmission power (e.g., |am|? = P, this is,
transmitting at maximum power).

Ko, .. 0T+ W, (D)

III. ROBUST TECHNIQUES FOR TBMA

The additional consumption of wireless resources of TBMA
with respect to DA —in fact, by a factor of L— provides more
information at the receiver side. According to (7), when the
number of attackers is small, we have r ~ r and the NMSE
is mostly affected by channel noise. Conversely, when the
number of attackers is large, radio resource ¢ can be easily
spotted due to the structure imposed by TBMA. We will use
this information to provide detection and compensation tech-
niques against Byzantine attacks. Notice that this robustness is
not only limited to attacks, but also to any abnormal alternation
in the amplitude of the received type, such as channel fading.
We leave the extension beyond attacks for future work.

Assume, without loss of generality, f to be the arithmetic
mean. Given p with an arbitrary distribution, attackers need
to select an adequate resource { to displace the mean. This
implies that £ < min s or £ > max sj, are suitable candidates.
However, in TBMA, these attacks are very easy to detect over
T because they represent outliers in the data distribution. Thus,
robust estimation over TBMA reduces to the classical signal
processing problem of outlier detection and robust estimation
over data distributions. Many off-the-shelf techniques can be
used to provide robustness. In the following we list a few:

e Robust estimators: for instance, the median is a non-
parametric robust estimator of the arithmetic mean.

e Percentile truncation: keeping only the data in a certain
percentile range removes extreme outliers.

e Resampling techniques: methods like bootstrapping or
RANSAC [10] resample the data several times to robustly
estimate the underlying distribution.

The purpose of this paper is not to provide a superior robust
algorithm for TBMA, but to show that classical techniques can
be implemented over TBMA. We define 1 as the corrected type
and we present an approach for robust estimation over TBMA
that integrates several techniques in Algorithm 1. First, we
threshold the type below the noise level (e.g., 01 = 302); then,
percentile truncation is designed to remove extreme outliers
that lie far outside the main distribution of the data. We define
P, and P, as the low and high percentiles of r, respectively.
The last step targets outliers that are not far from the overall
data range but deviate significantly from their local context
(i.e., their immediate neighbors). Under the assumption that a
single resource is attacked, we identify values that are much
larger than both their preceding and succeeding neighbors.
Instead of removing these points, we compensate for their
effect by replacing them with the average of their adjacent
values. This ensures smoother transitions in the data while
preserving the overall structure of the distribution. These
operations can be executed in parallel across the L radio
resources, ensuring an efficient scaling with the number of
resources.

From the corrected type r, the desired function can be
estimated using the aggregation function f = ¥(r). However,
note that some information from non-attackers transmitting on
resource { may be lost from the non-attackers that were trans-
mitting at the attacked resource. Unlike DA, where the design
of robust estimation is inherently coupled with the specific
function being computed, TBMA decouples attack detection
and compensation from function computation. For instance,
with DA, a robust estimator for the arithmetic mean might be
the median, requiring pre-processing and post-processing steps
that are tightly linked to the mean computation. In contrast,
TBMA makes the outlier removal independent from the func-
tion estimation. This decoupling enables TBMA to support the
computation of multiple functions from a single transmission,
offering greater flexibility compared to DA methods.

It is critical to emphasize that the design of this algorithm
and the corresponding parameters must be tailored to the
specific distribution of p. Additionally, the algorithm must
account for the nature of potential attacks on the aggregation
process. For example, if the attack strategy injects subtle
but coordinated outliers within the main distribution, step 3
(local outlier compensation) becomes vital. Conversely, if the
attack introduces extreme values far from the distribution,
step 2 (percentile truncation) is more critical. By adapting
the algorithm to both the data distribution and the anticipated
attack strategies, it can robustly ensure the integrity of the
aggregated results.

The authors in [3] tackle the problem of robust aggre-
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Algorithm 1: Robust estimation over TBMA
Input: r, 6,, 65, P, and P,
Output: U (%)
1. Threshold the noise:

. Te
‘r =
‘o

2. Percentile truncation:

. Ty
Ty =
‘o

3. Outlier detection:

if "F@| > 6
if "I:g| <

if P, <7< Py

otherwise

Te if |f@ — 7:[_1| S 92
and |7:[ — f£+1| S 02,

% otherwise.

4. Function estimation: f ~ U(r)

gation in amplitude-based AirComp, which aligns with the
general framework of TBMA. In their approach, devices are
grouped into clusters to disperse the attackers, with each group
transmitting concurrently using DA at different time steps.
The resulting aggregations are robustly averaged using the
geometric median. Notice that assigning different transmission
times to groups is simply an orthogonal radio allocation,
similar to what is done in TBMA. The key distinction lies in
how radio resources are assigned: in [3], this is done randomly,
whereas in TBMA, it is based on the data. Moreover, the
structure set by TBMA allows compensating a greater number
of attackers.

IV. RESULTS
A. Comparison of TBMA with DA

In Figure 1 we evaluate different AirComp techniques for
different functions and data distributions under the influence
of Byzantine attacks. We focus on the arithmetic mean, which
serves as the classical function in AirComp and is widely used
in aggregation tasks. Additionally, we compute the geometric
mean as an example of an alternative function that is not
present in the literature. To ensure adequate density for TBMA
to represent data distributions effectively, the setup includes
K = 10* devices and L = 256. In the succeeding section
we will showcase TBMA in a low density scenario. Different
ratios of attackers are tested, and results are averaged over 103
independent experiments.

Three methods are compared in the evaluation. The first is
DA, which aggregates all received signals without applying
any robust estimation, making it highly vulnerable to attacker
influence. We do not include any robust variations of DA
because no physical layer technique exists that can inherently
provide robustness, even for the arithmetic mean. The second
approach is the robust TBMA of Algorithm 1, for which we
set 01 = 302,05 = 5, P, = 0.01 and P> = 0.99. The third

10-1 DA == Algorithm 1 Median
B 1073
=
=
10751 \ —
1077
0.0 0.1 0.2 0.3 0.4 0.5
Ratio of attackers
(a) Arithmetic mean.
10-1 DA =— Algorithm 1
wi0-3
=
=
1073 —
1077

0.0 0.1 0.2 0.3 0.4 0.5
Ratio of attackers

(b) Geometric mean.

Fig. 1: NMSE for different AirComp techniques at SNR = 30
dB (lines) and 5 dB (markers).

method computes the median from the TBMA type, which
serves as a robust estimate of the arithmetic mean. However,
this approach is specific to the arithmetic mean and cannot
be easily generalized to other functions. Notably, computing
the median with DA is not straightforward. The underlying
modulation for DA is double sideband (DSB) modulation,
while for TBMA is PPM, and we consider an AWGN channel.

As shown in Figure 1, the results are consistent across
different signal-to-noise ratio (SNR) regimes, as the large
number of signal aggregations provides robustness against
channel noise. Regarding the attacks, DA is not robust, and the
error increases with the number of attackers for all functions.
TBMA with the median function is more robust than DA,
but the NMSE still increases with the number of attackers.
This emphasizes the need for robust AirComp techniques, not
just robust function estimates. In this respect, Algorithm 1 is
resilient to attacks, and the error does not increase significantly
with the ratio of attackers. For the arithmetic mean, the NMSE
even decreases because it is easier to detect outliers in the
type. This effect is not observed in the geometric mean, as it
involves nonlinear transformations.

B. FEEL use case

FEEL is a distributed approach where multiple devices
collaboratively train a global model by sharing model updates
(e.g., gradients in a neural network), instead of raw data. Air-
Comp complements FEEL by using the superposition property
of the wireless channel to perform aggregation directly during
transmission. This eliminates the need for separate aggregation
at the receiver, reducing communication overhead and latency.
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Fig. 2: Test accuracy across training for an AirComp-based
FEEL system under Byzantine attacks.

We consider the deployment of a FEEL system in which
a server coordinates the learning process of K = 50 devices.
The task is image classification using the MNIST dataset [11],
consisting in images of handwritten digits ranging from 0 to
9. The learning model consists in a classical convolutional
neural network (CNN) (see [12]) and deployed with the Flower
framework [13]. Each device trains a local CNN with a portion
of the data and sends the parameters after each epoch. For
transmission, each parameter is quantized, modulated with M-
FSK and transmitted in a TBMA fashion. The receiver receives
a type for each parameter and computes the arithmetic mean.
Notice that an orthogonal set of resources is required for every
parameter. We consider 6% of the devices (M = 3) to generate
Byzantine attacks and the figure of merit is the accuracy, this
is, the number of correctly classified samples.

Figure 2 shows the convergence of the AirComp-assisted
FEEL system. The upper bound represents the system trained
in a noiseless channel and without attacks. In practice, even a
small number of attackers is enough to corrupt the system and
prevent convergence. DA (i.e., non-robust AirComp) achieves
only 10% accuracy, equivalent to random guessing given 10
classes. In contrast, robust TBMA performs almost as good
as the non-attacked system in the noiseless scenario. The
performance is slightly below the baseline due to information
loss from devices sharing resources with attackers. At high
SNR, robust TBMA maintains strong performance, as M-FSK
proves more resilient than PPM, thanks to the frequency-based
nature of the modulation.

V. CONCLUSION

This paper presents the first physical-layer robust aggre-
gation method for AirComp under Byzantine attacks. Unlike
classical DA techniques, which aggregate data in the amplitude
domain, we propose using TBMA, where orthogonal radio
resources are allocated to different data, not transmitters. With
TBMA, the receiver obtains a histogram of the transmitted

data, enabling straightforward detection of attacks. TBMA
allows the integration of classical robust estimators and outlier
detection methods, extending beyond the sample average to
support robust estimation of diverse functions that cannot
be computed with DA. Through simulations, we demon-
strated that robust TBMA significantly outperforms DA in the
presence of Byzantine attacks, maintaining high performance
even with a substantial number of attackers. Additionally,
we showcased its practical applicability in a FEEL use case,
highlighting its resilience and adaptability. These results estab-
lish TBMA as a robust and general solution for AirComp in
adversarial settings. Future work will explore extending robust
TBMA to address other amplitude-related challenges, such as
channel alterations.
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