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Abstract—We propose a Mean-Field Type Game (MFTG)
framework for effective scheduling in multi-hop wireless sensor
networks (WSNs) using backpressure as a performance criterion.
Traditional backpressure algorithms leverage queue differentials
to regulate data flow and maintain network stability. In this
work, we extend the backpressure framework by incorporating
a mean-field term into the cost functional, capturing the global
behavior of the system alongside local dynamics. The resulting
model utilizes the strengths of non-cooperative mean-field type
games, enabling nodes to make decentralized decisions based on
both individual queue states and system mean-field effects while
accounting for stochastic network interactions. By leveraging
the interplay between backpressure dynamics and mean-field
coupling, the approach balances local optimization with global
efficiency. Numerical simulations demonstrate the efficacy of the
proposed method in handling congestion and scheduling in large-
scale WSNs.

Index Terms—WSN, Back-pressure, Poisson process, Mean-
field type games, non-cooperative games.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) have emerged as a fun-
damental technology for large-scale monitoring applications,
enabling data collection from a vast number of distributed
sensor nodes [1], [2]. In multi-hop WSNs, data generated by
sensor nodes must be efficiently relayed toward a designated
sink node(s), requiring effective scheduling and congestion
control strategies to optimize network performance. Tradi-
tional queue-based scheduling policies, such as the well-
known Backpressure Algorithm [3], [4], provide solutions by
prioritizing data transmissions based on queue differentials.
Backpressure principles have been applied to a variety of
real-world traffic problems, such as communication with au-
tonomous vehicles, reservation systems, and vehicle routing
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However, solving backpressure-based optimization prob-
lems at large network scales is computationally demand-
ing, especially due to the complexity of queue interactions.
To mitigate these challenges, mean-field type games have
emerged as a promising approximation framework that reduces
the computational complexity of modeling large-scale queue
interactions.

The concept of mean-field games was first introduced by
Lasry and Lions [8] and independently by Huang, Malhamé,
and Caines [9], providing a framework for analyzing strategic
interactions among a large number of agents influenced by
aggregate system behavior. Stochastic Mean-field type control
problems, also known as single-player mean-field type games,
were, later, introduced by Andersson and Djehiche [10]. These
models typically describe stochastic optimization problems
where the state dynamics and cost functional depend on the
first moment of the state, introducing a mean-field coupling
effect. The natural extension of this framework to multiple
interacting agents leads to mean-field type games, which
incorporate strategic decision-making among several players.
This approach has been widely studied in various contexts (see
e.g. [11], [12]).

Building on this foundation, we propose a Mean-Field Type
Game (MFTG) framework that extends backpressure-based
scheduling by incorporating mean-field interactions for scal-
able decision-making in multi-hop WSNs. While traditional
backpressure algorithms regulate data flow based on local
queue differentials, they do not account for large-scale network
effects. By integrating a mean-field term into the decision
process, our approach enables decentralized scheduling where
nodes optimize transmission strategies based on both local
queue states and system congestion dynamics, improving
scalability and efficiency.

To address the complex queue interactions, we heuristically
derive a mean-field type approximation for the queueing
dynamics, justifying its validity through key assumptions about
network exchangeability and weak interactions [13]. This
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allows us to replace empirical averages with expectations,
which reduces computational complexity.
The main contributions of this paper are as follows:

e« We propose a game-theoretic model for transmission
scheduling in multi-hop WSNs, extending the classical
backpressure framework to a non-cooperative mean-field
type setting.

o We heuristically derive the mean-field type queue dy-
namics and justify the approximation based on network
assumptions. A rigorous mathematical derivation of such
a mean-field type dynamics based on the law of large
numbers is outside the scope of this paper. It will appear
elsewhere.

« We validate our approach through numerical simulations,
demonstrating its effectiveness in balancing the load
among the nodes.

The remainder of this paper is structured as follows:
Section II introduces the network model and describes the
queue dynamics of multi-hop WSNs. Moreover, it presents
the backpressure-based scheduling game framework, while
Section III derives the mean-field type game. Section IV
presents simulation results validating the proposed approach,
and finally, Section V concludes with key insights and future
research directions.

II. SYSTEM MODEL

A. Network Model

We consider a multi-hop wireless sensor network for contin-
uous data flow, where multiple sensor nodes generate data that
must be transmitted to a single sink node (or multiple sinks).
The network is modeled as a directed graph G = (N, E),
where

o N is the set of nodes, consisting of N sensor nodes and
one designated sink node d.

o FE is the set of directed wireless links, where (i, j) € E
indicates that node ¢ can transmit data to node j.

o Each sensor node i € N,i # d generates a continuous
flow of data that must be delivered to the sink node d.

Each sensor node i € N,i # d maintains a queue
Q;(t), representing the amount of buffered data (measured
in a suitable data units, e.g. bytes). Nodes (sensors) make
transmission decisions using an on-off scheduling policy,
where the control variable y; determines whether a node
transmits data or remains idle. Additionally, sensor nodes
may (partially) process some incoming or locally generated
data before forwarding it, reducing the queue length through
data compression, aggregation, or event-driven filtering. This
is particularly relevant in applications such as environmental
monitoring, where redundant sensor readings can be combined
into a single representative value, or industrial IoT, where
periodic machine status updates can be aggregated.

Each queue is modeled as a R -valued stochastic queuing
process, Q; = {Q;(t),t > 0}, where at each time ¢, the queue
length is described by the following equation:

Qi(t) = Qi(0) + Ai(t) + Fi(t) — Di(t) — Pi(t), (1)

where:

e Q;(0) is assumed 0 without loss of generality.
A;(t) € Z4 is the external data arrivals at node 1.

e D;(t) € Z is the total outgoing transmissions from node
i that depend on the network control status x; € {0, 1}.

o F;(t) € Ry is the total incoming data received from
upstream nodes.

e P;(t) € Ry is the total data processed (e.g. aggregated).

The aggregator” process at any time ¢, P;(¢), for any node
1 is modeled as

Pi(t) = B(Ai(t) + Fi(t)), B €0,1]. 2)

where [ is the aggregation factor.
Replacing (2) in (1), the queue length’s equation becomes

Qi(t) = (1= BAi(t) + Fi(t)] — Di(t), Vi € N\ {d}. (3)

The sink node d continuously removes all received data,
ensuring

t>0. 4)

The data arrival process at node ¢ follows the process

A;i(t) = N;f ( /0 t i (u) du) , 6))

where

e A : Ry — R, are the data arrival rates, we assume that
they are randomized and i.i.d.

e N, (-) is rate 1 right-continuous with left-limits (RCLL)
stochastic point processes (Poisson counting process),
meaning each event corresponds to a burst of incoming
data.

The departure rate of node ¢ is given by

D;(t) = N; (/Ot wi(Qi(u))xi(u) du) ) (6)

where

e N, (-)is arate 1 Poisson process independent of N;" ().
Each Poisson departure event corresponds to a transmis-
sion of a burst of data as well.

o We model p; as p;(Qi(u)) = Ha"igi(w,w, where « €
[0,1] and m; : Ry — [0,mmax] are measurable, base
transmission rate, functions with bounded support (mp,x
is a finite fixed scalar). We assume that these rates (m/s)
are random and ¢..d.

This formulation ensures that nodes can adaptively regulate
their transmission rates based on their queue occupancy and
network conditions.
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The total incoming data flow rate at node 7 is given by

dD
JEN; / ‘N|

where M; is the set of neighboring nodes of ¢ and |[N;| denotes
its cardinality. Note that we assume a fixed uniform routing,
e, Yiew, ﬁ =1, Vi.

The expected cumulative arrival process satisfies E[A;(¢)]
fo u) du, Whlle the expected cumulative departure process
is glven by E[D fo wi(Qi(w))x: (u) du.

The scaled arrlval processes and the departure process have
the following associated martingales

o MA(t) = (1 - fo

o« M D( fO ,U,Z

)

Z( )du.

ME(t) = (1 - B)[Fi(t)

/ZWW Q1) () du].

The compensator for the martingale M/ (¢) is computed from

the following.
Ze [ wyene]

(1= B)E[F;(t)]
1
Z]:v/o M:uj(Qj(u))Xj(u) du
(since E[dD;(u)] = p;(Q;(u))x;(u) du)

' 1
5)/0 jgimﬂj(Qj(u))Xj(u)du-

=1~

We rewrite @); as

=M{(t)

+<1—m/ox< u) du —/ (Qi(w)xi (u) du

/ZMJQJ ()
15(Q; (w))xj (u)
t 2 T )

JEN;
JEN;
(u) du.

e _
=M, (t)+/0 (1 5)(
— i (Qi(u)) X

where MiQ is the martingale associated with Q);.

Qi(t) — MP(t) + M](t)

The differential form is given by

4Qi(t) = ((1 —an+ 5 S

JEN;

(Q;(1)x; (1) 8)

- Mi(Qi(t))Xi(t)> dt + dMP (1),

It is worth noting that although Poisson processes count
discrete transmission events, the queue length is measured in
some data unit rather than packets. Since the Poisson intensity
is integrated over time, the queue evolution smooths out in
expectation, justifying a continuous-time differential equation.

B. Backpressure-Based Scheduling Game Framework

The traditional formulation of backpressure-based schedul-
ing problems can be seen a cooperative game that consists
of fixing a time instance ¢, at which all the nodes (players)
determine collectively the optimal transmission policies x*
that maximize the over all backpressure-based criterion, i.e.

N

X'(t) € arg max B M (QO-Qs)m (@D,

(©))
Subject to (8), with
e xi € {0,1} determines wether the node is enabled for
transmission.
e I(G) = {0,1}" represents the set of feasible transmis-
sion schedules.
o The term (Q; — @);) ensures that data moves toward less
congested nodes, following backpressure principles.

The non-cooperative formulation models each node as a
self-interested player making decisions that are locally optimal
based on its own queue state and transmission opportuni-
ties. Unlike cooperative strategies, where nodes coordinate to
achieve a shared objective (optimize a social utility), each node
in this setting acts selfishly to maximize its own transmission
efficiency. However, nodes are still indirectly influenced by
the states of their neighboring queues, as seen in the utility
function (10), where the transmission decision depends on
the relative queue differentials Q;(t) — @, (t). This structure
naturally captures competition for transmission opportunities
and the impact of congestion.

Uit xix—) =E | 30 ﬁ(@(t)—c)j(t))m(cz(t))xi ,
JEN; ¢

(10)
where y_; represents the actions of all other players in the
neighborhood of i that corresponds to the queues Q;, j € N;.

The best response for node ¢ at time ¢ is given by

aUtH 1)
nax, (t, Xi» X—i)

subject to (8).
III. MEAN-FIELD TYPE GAME FORMULATION

As the number of neighboring nodes grows large, the
influence of any single neighbor is negligible. In the limit,
we obtain the mean-field queue dynamics

dQi(t) = ((1 = B)Ai — pi(Qi)xi + (1 — ﬂ)ﬂm(@)m])dt

+ M2 (). (11)
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This equation maintains node-level heterogeneity while incor-
porating a mean-field correction term that captures interactions
at scale. To justify replacing empirical averages with expecta-
tions, we first justify the exchangeability of nodes. Exchange-
ability means that nodes are statistically identical, meaning that
their joint distribution is invariant under permutations. This
assumption is valid in large-scale sensor networks under the
following conditions:

« Homogeneous sensor deployment where sensors are de-
ployed densely and uniformly, meaning that their arrival
rates and base service rates are independent and follow
the same statistical distribution,

o Dense local interactions ensuring that any single node’s
effect on another is diluted as the network grows,

« Identical decision rules where each node solves the same
optimization problem and follows an identical decision-
making process, meaning that the control policy x; is
drawn from the same functional form across all nodes,

o Network graph regularity, where the underlying network
topology is sufficiently regular, meaning that all nodes
experience similar levels of congestion and interference.

Under these conditions, the empirical mean of neighboring
queues converges to its expectation by the law of large

numbers:
> Qi

JEN;

[Qi()] (12)

| N\ as |N;| — oco.
This approximation allows us to express queue interactions
in a mean-field form. Furthermore, under the assumptions of
weakly interacting queues implying exchangeability, propaga-
tion of chaos ensures that individual nodes become decou-
pled, effectively reducing direct pairwise dependencies. This
decoupling significantly lowers computational complexity, as
each node’s decision process depends only on its local state
and a mean-field term rather than explicit interactions with
neighbors. Thus, the utility function in (10) simplifies to

Uilt, X7 x—i) = meve B [(Qi(t) — E[Q:()]) i Qi) x] -
‘ (13)
This equation shows that each queue evolves based on its own
arrival and departure process, a mean-field term that captures
the impact of all other nodes in the network, and the control
x: chosen based on local and mean-field effects.

IV. SIMULATIONS

In this section we simulate a dense network modeled as a
directed acyclic graph. The network comprises 250000 nodes
(including one sink node) arranged in a grid configuration,
(see Figure 1). Each node, here, represents a homogeneous
group of sensors that are behaving similarly. Moreover, we
consider a discrete-time approach to simulate the (mean-field)
evolution of the queuing process Q;(t) for each node i in
the limit, which is governed by a combination of external
arrivals, internal routing from other nodes, and departures due
to transmissions and “partial” internal processing. Let [0, 7]
be a fixed time interval that is divided into uniform time

steps tr = k- At, where At is the discrete time step, and
ke {0,1,..., K}, such that K = %. The discretized queue
dynamics is simulated, for each node ¢, as

Qi(ty + At) = Qqi(tx) + (1 — ﬁ)[Al(tk + At) + Fi(te + At)]
Dt + Ab).

At each time step tp, the number of external ar-
rivals to node ¢ is sampled from a Poisson distribu-
tion with rate M;(t;) and scaled by the factor (1 —
B), while the number of departures is also sampled
from a Poisson distribution but with rate pu;(Q;(tx))
Xi(tk), i.e., Ai(tk+1) ~ POiSSOIl(/\i(tk)At), Di(tk+1) ~
Poisson(; (Q;(tr))x:(tr)At), where the the arrival rates \}s
are sampled independently from a uniform distribution.

We simulate the internal arrivals for each node ¢ by com-
puting, empirically, the scaled quantity (1 — 3)u;(Q;)x:]At.
For simplicity, we adopt a normalized time step of
At = 1. The transmission rates p;(Q;) are modeled as
m;/ (1+aQ;(t)), a > 0, where the base rates m/s are
independent and uniformly distributed. At each time instance,
we determine the value of y;, for each node, depending on
the value of the differential (Q;(t) — E[Q;(t)]). The control
x: is one if the differential is positive and zero otherwise.
Table I summarizes the values of all the parameters used in
the simulation, while Algorithm 1 details the simulation.
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Fig. 1. Directed Grid with last node as sink

Figure 2 illustrates the behavior of average queue lengths.
Initially, we observe a rapid increase in the queue lengths,
which is due to the difference between data arrivals and the
limited initial transmission capacity. As the system evolves, the
accumulation of data gradually builds sufficient backpressure,
which helps to regulate the flow of data, resulting in a more
balanced state where the queue lengths stabilize at a consistent
level. Such a transition, from an initial phase of instability
to a steady state, is characteristic of systems employing
backpressure, where the algorithm requires some time to adjust
and optimize the data flow before achieving equilibrium.

CONCLUSION

This work introduced a Mean-Field Type Game formulation
for decentralized scheduling in multi-hop wireless sensor
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Fig. 2. A simulated system of 250,000 nodes (1000 are shown)

Algorithm 1 Backpressure-based Mean-field Type Pseu-

docode
Require: Parameters: (3, Mmin, Mmaxs Amins Amax> K, N, M, «

1: Imitialization: For each node ¢ = 1,..., N, and for each sample j =
1,...,M:

2: Set QJ(0) =0 and x;(0) = 1.

3 Sample >\'L ~ U(Aminv )\max) and m; ~ u(mmina mmax)~

4: for k=1,...,K do

S: fori=1,...,N do

6: forj=1,...,M do

7 Generate A} (k) ~ Poisson();).

8

i ™y
Compute p! (k) = —————.
pute 413 (%) 1+aQi(k—1)
9: Generate Df(k) ~ Poisson ui(k) xi(k — 1))
10: Compute the internal arrival rate: F,LJ (k) = u{ (k) xi(k—1).
11: Update the queues:
QLK) = Q(k — 1) + (1= B)[4] (k) + F{ (k)] — DI ().
12: end for
13: Set Qsink(k) =0. B )
14: Compute the sample average: Q; (k) = ﬁ jM:1 Q1 (k).
15: Update control:

xi(k){l’ if QT (k) > Qi(k), r~U{L,...,M},

0, otherwise.

16: end for
17: end for

networks using backpressure-inspired principles. By incorpo-
rating a mean-field interaction term into the node dynamics,
the model enables local decision-making while approximat-
ing large-scale network behavior. We modeled the system
as a non-cooperative game, where each node optimizes its
transmission strategy based on local queue states and the
average behavior across the network. Through a law of large
numbers approximation, we derived a stochastic differential
equation that captures the limiting dynamics of the system
while reducing the complexity associated with tracking in-
dividual queue interactions. While our numerical simulations
illustrate the consistency of the mean-field approximation and
show stable behavior under varying node counts, a compre-

TABLE I
SIMULATION PARAMETERS
Parameter  Description Value/Range
N Number of queues/nodes 250000
K Total simulation time 1000 time units
At Time step size 1 time units
M number of “trial” samples 100
m; Base service rate U[1,5]
« Congestion sensitivity factor ~ 0.01
B Aggregation factor 0.7
A External arrival rate 4[0.1,0.5]
Q(0) Initial queue length 0

hensive performance comparison with classical backpressure
scheduling and other control strategies is beyond the current
scope. Future work includes quantitatively benchmarking our
approach against conventional backpressure methods, studying
heterogeneous topologies, adaptive learning strategies, and
interference-aware mechanisms to enhance the model’s ap-
plicability to real-world wireless networks. In addition, we
plan to analyze the impact of interference constraints in the
mean-field regime and demonstrate how the original (pairwise)
constraints transition into a statistical activation constraint.
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