
Service Placement Using Distributed Pure
Exploration in Linear Bandits

Mariam Yahya ∗ †, Aydin Sezgin †, and Setareh Maghsudi†
∗ Department of Computer Science, University of Tübingen, Germany

† Faculty of Electrical Engineering and Information Technology, Ruhr-University Bochum, Germany

Abstract—The service placement problem in mobile edge
computing focuses on determining which services to deploy at the
network edge to maximize the quality of service. This problem is
challenging because of the unknown service demand and network
uncertainty. In this paper, we model the service demand as
a linear function of the service attributes and formulate the
problem as a linear bandit. We propose a novel distributed and
adaptive multi-agent best arm identification algorithm under the
fixed-confidence setting for linear bandits. The numerical results
show that our algorithm solves the service placement problem
with high confidence and leverages agent collaboration to achieve
a near-optimal speedup. We also derive the theoretical upper
bound on the sample complexity and communication overhead.

Index Terms—Best arm identification (BAI), collaborative
learning, linear bandits, service placement

I. INTRODUCTION

As mobile communication technologies advance rapidly and
the number of 5G users is expected to reach 6.3 billion by 2030
[1], the development of innovative infrastructure becomes a
pressing necessity. Cloud computing enables devices to offload
complex tasks to the cloud, which offers substantial computing
and storage resources to support complex applications. How-
ever, this introduces high latency and security concerns. Multi-
access edge computing (MEC) brings computation and storage
resources closer to end users, reducing latency and improving
security and quality of service (QoS) [2]. Nevertheless, dy-
namic user behavior and uncertainties in the environment pose
significant challenges in meeting the growing demand for edge
services.

The service placement (caching) problem addresses the
challenge of determining which services to place at the
resource-limited network edges to optimize performance met-
rics such as QoS. Services not placed at the edge are requested
from the cloud or other edge servers [3], [4]. Since service
demand is usually unknown, multi-armed bandit (MAB) ap-
proaches have been applied to learn demand online. MAB is a
sequential decision-making framework where, in each round,
the learner selects one of K arms and receives a reward drawn
from a fixed but unknown distribution [5]. Contextual MAB is
a variant that leverages contextual information, characterizing
the service or the network [4], [6], to enhance learning.

In this paper, we propose a distributed and adaptive best
arm identification (BAI) algorithm for multi-agent linear ban-
dits (LB) in the fixed-confidence setting to optimize service
placement at the network edge. Unlike conventional MABs

This work was funded by the Federal Ministry of Education and Research of
the Federal Republic of Germany under grants 16KISK037 and 16KISK035.

that adapt service selection to real-time requests, BAI focuses
on identifying the best service for long-term deployment.

We model service placement as a distributed multi-agent
BAI problem, where edge servers mounted on small base
stations (SBS) act as agents and the set of services corresponds
to the arms. The SBSs collaborate to find the best placement by
sharing observations through a central coordinator, achieving
near-optimal speedup M , where M is the number of SBSs.
Contextual information on long-term average service popular-
ity is used to enhance learning.

BAI strategies in LBs differ from classical MABs due to arm
correlations. In LBs, pulling suboptimal arms can still improve
the estimation of the underlying linear model. Soare et al. [7]
were the first to address the BAI problem in LB under a fixed-
confidence setting. They proposed the XY-Static algorithm,
which uses optimal experimental design for arm selection but
suffers from high sample complexity. To enhance efficiency,
they introduced the XY-Adaptive algorithm, which operates
in phases, applying static allocation and eliminating less infor-
mative samples. In contrast, Xu et al. [8] proposed the Linear
Gap-based Exploration (LinGapE), a fully adaptive algorithm
that adjusts arm selection based on past observations.

Our proposed algorithm, named Distributed LinGapE (Dis-
tLinGapE) extends the work in [8] to a collaborative multi-
agent case. In short, the main contributions of this paper are:

• We propose a collaborative and adaptive multi-agent
algorithm for BAI in the LB fixed-confidence framework.

• We formulate the service placement problem in small cell
networks as a LB problem, aiming to identify the optimal
service placement that maximizes the reduction in the
total user-perceived delay.

• To the best of our knowledge, this is the first work to
apply the BAI setting in LB to MEC in general, including
the service placement problem. We use our algorithm to
find the best service placement while reducing the learn-
ing rounds per SBS compared to independent learning.

• We obtain the theoretical upper bounds on the number
communication rounds and the sample complexity.

• Numerical results show the effectiveness of our algorithm
in finding the best service placement and achieving a
near-optimal speedup.

II. SYSTEM MODEL

We first introduce the notation used throughout this work.
Notations: We use boldface lowercase and boldface uppercase
letters to represent vectors and matrices, respectively. We use

2072ISBN: 978-9-46-459362-4 EUSIPCO 2025

[K] to denote the set {1, . . . ,K}. Besides, ∥x∥p denotes the
p−norm of a vector x, and the weighted 2−norm of vector x
is defined by ∥x∥A =

√
xTAx. Furthermore, we use P[·] to

denote the probability of the expression inside the brackets.
We consider a system with a macro base station (MBS)

connected to the cloud and M homogeneous SBSs, each pro-
viding communication coverage and services to users within
M non-overlapping coverage areas of similar size. The storage
and computational resources at the cloud are large and can host
all services, whereas the resources at the SBSs are significantly
limited. The MBS provides wide-area coverage and forwards
user service requests to the cloud. The SBSs are connected
to the MBS in a star-shaped network topology to facilitate
information exchange.

A service provider manages K services that can be deployed
either at the cloud or the SBSs. Each service k ∈ [K] is
characterized by a d-dimensional context vector xk ∈ Rd,
representing various factors such as the service type, com-
putational and memory requirements, and geographic or time-
based demand. Here, our optimization problem depends on the
service demand, so we assume that xk is the long-term average
service demand over d time periods. Specifically, xk is an 8-
dimensional vector representing the users’ average demand for
service k over a 24-hour period, sampled every three hours.

Due to limited edge resources, each SBS m ∈ [M] can host
only one service at any given time. If the service requested
by the user is unavailable at the SBS, it has to offload the
request to the cloud via the MBS, incurring additional delay.
In this work, we aim to identify the service that minimizes the
total users’ delay the most when placed at the SBSs instead
of the cloud. This problem is challenging because the service
demand is unknown a priori.

The service placement process operates in discrete time
steps indexed by t = 1, 2, At each t, each SBS selects
a service at,m ∈ [K] with vector xat,m

and observes the
resulting delay. To facilitate learning the service demand and
effectively model the relationship between the context and
the resulting demand, we adopt the common approach of
representing service demand as a noisy linear function of the
context [9]. Mathematically, the demand for service at,m is

pt,m = x⊤
at,m

ω + ξt,m, (1)

where ω ∈ Rd is an unknown parameter vector representing
the underlying relationship between services’ contexts and
demands, ξt,m is the noise. User delay varies based on service
placement at SBSs or the cloud, as explained below.

Service Delay at an SBS: If a service is placed at an SBS,
the service delay consists of the transmission delay of tasks
from the users to the SBS and the processing delay at the
SBS. We assume that the task response delay is negligible [6].
For the uplink delay, we use the average data rate across all
users because we are concerned with long-time deployment,
and the instantaneous user data rates are unknown. The uplink
transmission rate to an SBS, averaged across the users, is given
by ρt,m = W log

(
1 +

Pht,m

I+σ2
N

)
, where W is the bandwidth of

the uplink channel, P is the user’s transmission power, ht,m

is the channel gain at time t, I is the interference power, and

σ2
N is the noise power. Let sk be the size of task k. Then, the

communication delay of task k at SBS m is given by sk
ρt,m

. The
round trip delay is RTTt,m. The processing delay at SBS m
is given by csk

ft,k,m
, where ft,k,m is the CPU capacity assigned

to service k at SBS m and time t, and c is the number of CPU
cycles required per bit. Thus, the total delay for service k at
SBS m at time t is

dt,m(k) =
sk
ρt,m

+RTTt,m +
csk

ft,k,m
. (2)

Service Delay at the Cloud: If the service requested by users
in the service area of SBS m is not hosted at SBS m, the task
request is offloaded to the cloud via the MBS. Let 0 denote the
cloud index, and let ρt,0 be the average data rate between the
users and the MBS. Then, the wireless transmission delay is
sk
ρt,0

. The transmission delay in the backbone network with data
rate ρb

t is sk
ρb
t
. The round-trip delay is RTTt,0. Additionally,

the processing delay at the cloud is csk
ft,k,0

, where ft,k,0 is the
CPU capacity for service k at time t. Thus, the total delay is

dt,0(k) =
sk
ρt,0

+
sk
ρb
t

+RTTt,0 +
csk
ft,k,0

. (3)

Service Placement Utility: The utility of a service placement
is the improvement in the total users’ delay resulting from
placing the service at the SBSs instead of the cloud. Let
at,m ∈ [K] be the service placed at SBS m at time t.
The utility of this placement for one task is dt,0(at,m) −
dt,m(at,m). The utility for the service demand given in (1)
is (dt,0(at,m)− dt,m(at,m)) pt,m. This can be expressed as

rt,m(at,m) = x⊤
at,m

θ∗ + ηt,m, (4)

where θ∗ = (dt,0(at,m)− dt,m(at,m))ω, and ηt,m is an
independent, zero-mean, R-sub-Gaussian noise variable.

III. PROBLEM FORMULATION

Let a∗ = argmax
a∈[K]

x⊤
a θ

∗ denote the optimal service that

maximizes the expected utility. We aim to identify the esti-
mated best service â∗m such that

P
[
(xa∗ − xâ∗

m
)⊤θ∗ > ϵ

]
≤ δ (5)

as fast as possible. Here, ϵ is the desired accuracy and δ is the
confidence. 1 Since all SBSs access the same set of services
and share the same vector θ∗, there is a single optimal service
for all SBSs, i.e., â∗ = â∗m.

IV. MODELING SERVICE PLACEMENT AS A DISTRIBUTED
BAI PROBLEM

We model the service placement problem as a collaborative
BAI problem and solve it using the DistLinGapE algorithm,
presented in Section V. Each SBS m ∈ [M] acts as an agent,
while each service k ∈ [K] corresponds to an arm associated
with a context vector xk ∈ Rd. The same set of K services is
available to all SBSs. In this setting, selecting an arm in the
bandit framework corresponds to an SBS m hosting a service.

1Since we aim to identify the best arm (service), we assume that ϵ = 0,
but the work remains valid as an (ϵ, δ)-PAC algorithm where ϵ > 0.

2073

Observing the reward at time t involves observing the total
reduction in delay resulting from this service placement among
all users in the SBS’s coverage area.

Our problem can be solved by iteratively learning the
parameter vector θ∗ using the BAI algorithm. Since the SBSs
share the same vector θ∗ and can communicate through the
MBS, collaboration in identifying the best service speeds up
the learning process significantly. At a high level, the process
of identifying the best service placement proceeds as follows.
At time t, each SBS m hosts a service at,m and observes the
corresponding reward (utility). This reward is used to update
the estimate of the unknown parameter vector, denoted θ̂t,m,
which guides the next service placement decision. To minimize
communication overhead, each SBS continues hosting services
until a significant change in information is detected at one
of the SBSs. When such a change occurs, a communication
round is triggered, and the SBSs share their observations. This
process repeats until the best service is identified. Section V
describes the proposed algorithm in detail.

V. THE DISTLINGAPE ALGORITHM

We consider a distributed LB problem with M agents, where
m ∈ [M], that exchange updates through a central coordinator.
All agents have access to the same set of K arms, where each
arm k ∈ [K] is associated with a d-dimensional context vector
xk, with ∥xk∥ ≤ L for some constant L. In round t, agent m
pulls arm at,m ∈ [K] and receives an immediate reward given
by (4), where ∥θ∗∥ ≤ S. The algorithm terminates when any
agent identifies the optimal arm, which is then shared among
all agents as the global best arm. The proposed DistLinGapE
algorithm is detailed in Algorithm 1 on the next page. The BAI
process involves sequentially deciding which arm to pull and
constructing the confidence set based on the observed reward
until the best arm is identified [7], [8].

A. Construction of Confidence Sets

Each agent uses the information available at time t to
find the ℓ2-regularized least squares estimate of θ∗, i.e.,
θ̂t,m. This information includes the locally updated d × d
matrix given by ∆At,m =

∑t
s=tn+1 xas,mx⊤

as,m, where tn
is the index of the n-th communication round, and ∆bt,m =∑t

s=tn+1 xas,mrs,m. The agents share ∆At,m and ∆bt,m
with the coordinator in each communication round. The coor-
dinator aggregates this information to obtain Acoor,t and bcoor,t,
and shares it with the agents for use in the next communication
round. Consequently, at time t each agent has access to the
coordinator’s data and the locally collected data, as given in
line 7 of Algorithm 1. With this information, the estimated
parameter vector is given by θ̂t,m = A−1

t,mbt,m, with the
confidence bound given in Proposition 1.

Proposition 1. Confidence Ellipsoid [10, Th. 2] For LBs with
conditionally R-sub-Gaussian noise, for R ≥ 0, let ∥θ∗∥2 ≤
S, and λ be the regularization parameter. Then, the relation

|x⊤(θ̂t,m − θ∗)| ≤ ∥x∥A−1
t,m

Ct,m (6)

holds for t ∈ {1, 2, . . . }, with confidence δ = Mδm, where

Ct,m = R

√
2 log

det(At,m)
1
2

λ
d
2 δm

+ λ
1
2S. (7)

B. The Arm Selection Strategy

In each round t, each agent m uses At,m to find the two
arms whose gap needs to be estimated: the arm with the
highest estimated reward it,m, and the most ambiguous arm
jt,m, given in lines 24 and 25 of Algorithm 1, respectively.
Afterwards, it pulls the arm with the largest information gain
in estimating the expected reward gap: ∆̂t,m(i, j) = (xi −
xj)

⊤θ̂t,m with confidence βt,m(i, j) = ∥xi − xj∥A−1
t,m

Ct,m.
In each round t, the agents check if the stopping condition is
met, that is, if the upper confidence bound on the gap of the
expected reward falls below the target accuracy ϵ. Formally,

Bm(t) = ∆̂t,m(jt,m, it,m) + βt,m(jt,m, it,m) ≤ ϵ. (8)

If the condition is satisfied, the algorithm stops and the arm
with the highest estimated reward is identified as the best arm.
Otherwise, the algorithm proceeds to pull the next arm.

Following [7], [8], there are two approaches for the arm
selection strategy. In the greedy approach, each agent pulls
the arm that minimizes the confidence bound, given by

at+1,m = argmin
a∈[K]

∥xit,m − xjt,m∥(At,m+xax⊤
a)−1 . (9)

Although we do not analyze the theoretical guarantees of
this approach, we empirically show that it performs well in
the numerical results [8]. Alternatively, the second approach
involves finding the optimal ratio for arm k appearing in
the optimal allocation sequence at agent m as t → ∞ [8].
This ratio minimizes ∥xit,m − xjt,m∥A−1

t,m
. Then, the arm

achieving this ratio as closely as possible is selected. Let
w∗

k(it,m, jt,m) be the k-th element in w∗(it,m, jt,m) defined
as w∗(it,m, jt,m) = argmin

w∈Rd

|w|, such that xit,m − xjt,m =∑K
k=1 wkxk. The optimal ratio for selecting arm k is [8]

p∗k(it,m, jt,m) =
|w∗

k(it,m, jt,m)|∑K
k=1|w∗

k(it,m, jt,m)|
. (10)

Let Ta,m(t) be the number of times arm a is selected up to
time t that is available to agent m. The arm selection strategy
aims to keep the actual arm selection ratio as close as possible
to the target ratio. Thus, the pulled arm satisfies

at+1,m = argmin
a∈[K]:p∗

k(it,m,jt,m)>0

Ta,m(t)

p∗k(it,m, jt,m)
. (11)

In the DistLinGapE, collaboration between agents reduces
their individual sample complexity. This reduction is mea-
sured by the speedup over a centralized algorithm, defined as
SA = TO

TA
, where TO and TA are the per-agent sample com-

plexities of the best centralized and collaborative algorithms,
respectively [11]. The speedup satisfies SA ≤M , where M is
the number of agents and represents the maximum speedup.

The upper bound on sample complexity for the arm selec-
tion strategy in (11) is given in Theorem 1. We first define the

2074

problem complexity Hϵ =
∑K

k=1 max
i,j∈[K]

p∗
k(i,j)α(i,j)

max
(
ϵ,

ϵ+∆i
3 ,

ϵ+∆j
3

)2 ,

where α(i, j) = |w∗(i, j)| and ∆i = (xa∗ − xi)
⊤θ∗ [8]. We

omit the proof due to length limitations.

Theorem 1. The DistLinGapE algorithm can identify the
(ϵ,Mδm)-best arm using the arm selection strategy in (9)
or (11) with probability 1 −Mδm and the following sample
complexity per agent: For λ ≤ 2R2

S2 log K2

δm
: τm ≤ µ +

4HϵR
2

M

(
2 log K2

δm
+ d log

(
1 + Y 2L2

λd

))
, where µ = K

M + 1,

Y = 2
√
16H2

ϵR
4dL2/(Mλ) +N2, and N = 8HϵR

2

M log k2

δm
.

For λ > 4HϵR
2L2: τm ≤ 2

(
4HϵR

2

M log K2

δm
+ 2HϵλS

2

M + µ
)

.

C. Communication Rounds

To reduce the communication overhead, an agent m initiates
a communication round only when there is a significant change
in the matrix At,m. This change is evaluated by the ratio

det(At,m)
det(λI+Acoor,t)

given in line 14 of Algorithm 1, where det(·)
is the determinant and I is the identity matrix [12]. The
threshold D controls the communication frequency. Let τ be
the total sample complexity. The upper bound on the number
of communication rounds is given by Theorem 2, we omit
the proof due to the space limit.

Theorem 2. The total communication cost of the DistLinGapE

algorithm is upper bounded by O

(√
Mτd log2 τ

D

)
.

VI. NUMERICAL RESULTS

We compare the performance of DistLinGapE with (a)
the XY-Oracle [7], which assumes knowledge of θ∗, (b)
the XY-Adaptive [7], which runs in phases and eliminates
uninformative directions after each phase, and (c) LinGapE
[8], a fully adaptive BAI algorithm for the single-agent setting.
Results are averaged over 30 runs. Despite setting each agent’s
confidence to δm = 0.05, DistLinGapE consistently identifies
the optimal arm with zero errors.

A. Simulation on Synthetic Data

We use the benchmark example from [7], commonly used in
BAI in LB. This example consists of d+1 arms. The context
vectors of the first d arms are the canonical basis vectors,
given by x1 = e1, . . . ,xd = ed. The context vector of the
last arm is xd+1 = [cos(ϕ), sin(ϕ), 0, . . . , 0]⊤ with ϕ = 0.01.
The parameter vector is θ∗ = [2, 0, . . . , 0]⊤ and the noise
follows ηt,m ∼ N (0, 1). Since argmaxk∈[K] x

⊤
k θ

∗ = 1, arm
1 is the optimal arm a∗ in this example.

Fig. 1 shows how the sample complexity changes with the
dimension d. DistLinGapE, with M = 4 agents, achieves a
total sample complexity close to LinGapE, effectively reaching
the optimal speedup of M . Since agents pull arms sequentially,
each agent’s sample complexity is 1/M of the total, as shown
by the dashed line. The semi-adaptive XY-Adaptive algorithm
requires more samples to reach the same confidence. Despite
knowing θ∗, XY-Oracle has a higher sample complexity than
DistLinGapE because DistLinGapE has tighter confidence
bounds, which enable more accurate reward estimates [8].

Algorithm 1 The DistLinGapE Algorithm

1: Input: ϵ, δ, S, R, and λ
2: Output Arm â∗ that satisfies stopping condition.
3: Initialize agents: ∀m ∈ [M], A0,m = 0, b0,m = 0,

∆A0,m = 0, ∆b0,m = 0,∆t0,m = 0; ∀k ∈ [K], ∆Tk,m = 0

4: Initialize coordinator: Acoor,0 = 0, bcoor,0 = 0, Tk = 0
5: for t = 1, . . . ,∞ do
6: for Agent m = 1, . . . ,M do
7: At,m = λI + Acoor,t + ∆At,m, bt,m = bcoor,t +

∆bt,m, and ∆tt,m+ = 1
8: Select pulling direction: (it,m, jt,m, Bm(t)) ←

SELECT-DIRECTION(At,m, bt,m)
9: if Bm(t) ≤ ϵ then

10: it,m is the best arm â∗; Terminate algorithm
11: end if
12: Pull at,m according to (9) or (11) and observe rt,m
13: Update ∆ At,m+ = xat,mx⊤

at,m
,

∆ bt,m+ = xat,m
rt,m, ∆ Tat,m,m(t)+ = 1,

Tat,m,m(t) = Tat,m(t) + ∆ Tat,m,m(t)
// Communication condition

14: if ∆tt,m log
det(At,m)

det(λI+Acoor,t)
> D then

15: Each agent m ∈ [M] sends ∆At,m,∆bt,m, and
∆Tk,m(t),∀k ∈ [K] to coordinator and resets
∆At,m = 0,∆bt,m = 0, ∆tt,m = 0, ∆Tk,m = 0.

16: Coordinator collects ∆At,m, ∆bt,m,∆Tk,m(t)
17: Coordinator computes Acoor,t+ =

∑M
m=1 ∆At,m,

bcoor,t+ =
∑M

m=1 ∆bt,m, Tk(t)+ =
∑M

m=1 ∆Tk,m(t)

18: Coordinator broadcastsAcoor,t, bcoor,t, Tk(t) to agents
19: end if
20: end for
21: end for
22: Procedure Select-Direction(At,m, bt,m)
23: θ̂t,m ← A−1

t,mbt,m
24: it,m ← argmaxi∈[K](x

⊤
i θ̂t,m)

25: jt,m ← argmaxj∈[K](∆̂t,m(j, it,m) + βt,m(j, it,m))

26: Bm(t)← maxj∈[K](∆̂t,m(j, it,m) + βt,m(j, it,m))
27: return it,m, jt,m, Bm(t)
28: EndProcedure

TABLE I: NUMBER OF SAMPLES PER ARM FOR d = 5.

Arm DistLinGapE LinGapE XY-Adaptive XY-Oracle
Arm 1 794.36 727.77 3898.20 1623.73
Arm 2 153060.47 147117.53 776540.00 340027.27
Arm 3 34.07 27.10 30.27 1618.00
Arm 4 40.43 25.47 18.30 1620.10
Arm 5 33.10 28.90 20.73 1604.80
Arm 6 8.47 4.97 20.53 1616.67

Table I shows the number of samples per arm for d = 5. The
DistLinGapE column represents the sum of pulls across all 4
agents. Arm 2 is pulled significantly more than any other arm,
including the optimal arm 1. This is because, for small values
of ϕ, 0 < ϕ≪ 1, arm d+1 is the strongest competitor to arm
1, with ∆min = (x1 − xd+1)

⊤θ∗. To accurately identify arm
1 as the best, the uncertainty in the direction y = (x1−xd+1)
must be minimized. Since arm 2 is nearly aligned with this

2075

Fig. 1: The sample complexity for different values of d.

direction, it is the most informative choice. The number of
samples per agent in DistLinGapE is 1/M of the table value.

B. Simulation on the Small Cell Network

Consider a network with a service provider with 10 services.
The context of each service, xk, is an 8-dimensional vector
representing the long-term average service demand over 24
hours, divided into eight three-hour periods. To model xk

in our simulation, the base demand for each service follows
a Zipf distribution, with Gaussian noise added to capture
demand fluctuations across different time periods. The channel
bandwidth is 10 MHz, the transmission power is 10 dBm, and
the noise and interference power are σ2

N = −104 dBm and
I = −90 dBm, respectively. The cloud CPU frequency is
ft,k,0 = [4.6, 5.6] GHz, while at each SBS, it is ft,k,m =
[2.3, 3.2] GHz [6], with c = 100 cycles/bit. The task size is
sk = [0.5, 1] MB, with bit rate ρb

t = [1, 4] Gbps. The round-
trip time is RRTt,0 = [20, 40] ms and RRTt,m = [2, 7] ms.

(a) The average delay re-
duction for each service k.

(b) The effect of the communication
threshold D on performance.

Fig. 2: Performance of a network with K = 10 and M = 4.

Fig. 2a shows the average delay reduction from placing
service k at the SBSs in a four-SBS network. Here, service 7
is optimal and the DistLinGapE algorithm correctly identifies
it as the best with zero error despite the unknown service
demand and randomness of the environment. Table II shows
the speedup from collaborative learning when the threshold
D = 10. The per-agent sample complexity for the centralized
algorithm is TO = 70513.15 samples. If the SBSs learn
independently, the total sample complexity would be MTO,

but collaboration can achieve a speedup M . The sample com-
plexity of the centralized XY-Oracle algorithm is 657181.16
samples. It is higher than that of DistLinGapE because the
latter has a tighter confidence bound.

TABLE II: ALGORITHM SPEEDUP

M 1 2 4 6
samples/agent 70513.15 35440.81 17922.73 12078.15

SA - 1.99 3.93 5.84

Fig. 2b shows the impact of the communication threshold
D in a network with four SBSs. Small values of D lead to ex-
cessive communication overhead due to frequent information
exchange, while large D increases sample complexity as each
SBS performs more local updates before sharing information.
Thus, carefully tuning D is important for balancing commu-
nication efficiency and sample complexity. The vertical blue
line marks D = 10, which is used in Table II for M = 4.

VII. CONCLUSION AND FUTURE WORK

This paper addresses optimal service placement in small cell
networks with unknown service demand, aiming to maximize
the reduction in total user delay when deploying a service in
SBSs instead of the cloud. We model the service demand as a
linear function of the long-term average demand and frame the
problem as a distributed BAI problem. Our algorithm identifies
the optimal service with high confidence and achieves near-
optimal speedup. We also derive upper bounds on sample
complexity and communication rounds.

REFERENCES

[1] Ericsson, “Ericsson mobility report,” (2024). Accessed: Jan. 2025.
[Online] Available: https://www.ericsson.com/en/reports-and-papers/
mobility-report/reports/november-2024.

[2] Y. Li, L. Li, and Z. Zhou, “Joint edge caching and computation
offloading for heterogeneous tasks in MEC-enabled vehicular networks,”
Veh. Commun., vol. 50, p. 100860, 2024.

[3] W. Chu, X. Zhang, X. Jia, J. C. Lui, and Z. Wang, “Online opti-
mal service caching for multi-access edge computing: A constrained
multi-armed bandit optimization approach,” Comput. Netw., vol. 246,
p. 110395, 2024.

[4] T. Ouyang, R. Li, X. Chen, Z. Zhou, and X. Tang, “Adaptive user-
managed service placement for mobile edge computing: An online
learning approach,” in IEEE Conf. Comput. Commun. (INFOCOM),
pp. 1468–1476, IEEE, 2019.

[5] T. Lattimore and C. Szepesvári, Bandit algorithms. Cambridge Univer-
sity Press, 2020.

[6] L. Chen, J. Xu, S. Ren, and P. Zhou, “Spatio–temporal edge service
placement: A bandit learning approach,” IEEE Trans. on Wireless
Commun., vol. 17, no. 12, pp. 8388–8401, 2018.

[7] M. Soare, A. Lazaric, and R. Munos, “Best-arm identification in linear
bandits,” Adv. in Neural Inf. Proc. Syst., vol. 27, 2014.

[8] L. Xu, J. Honda, and M. Sugiyama, “A fully adaptive algorithm for pure
exploration in linear bandits,” in Int. Conf. on Artif. Intell. and Statist.,
pp. 843–851, PMLR, 2018.

[9] P. Yang, N. Zhang, S. Zhang, L. Yu, J. Zhang, and X. Shen, “Content
popularity prediction towards location-aware mobile edge caching,”
IEEE Trans. on Multimedia, vol. 21, no. 4, pp. 915–929, 2018.

[10] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári, “Improved algorithms for
linear stochastic bandits,” Adv. in Neural Inf. Proc. Syst., vol. 24, 2011.

[11] C. Tao, Q. Zhang, and Y. Zhou, “Collaborative learning with limited
interaction: Tight bounds for distributed exploration in multi-armed
bandits,” in IEEE 60th Annu. Symp. on Found. of Comput. Sci. (FOCS),
pp. 126–146, IEEE, 2019.

[12] C. Li and H. Wang, “Communication efficient federated learning for
generalized linear bandits,” Advances in Neural Inf. Process. Syst.,
vol. 35, pp. 38411–38423, 2022.

2076

