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Abstract—Maximum Likelihood (ML) Direction-of-Arrival
(DoA) estimation under the Vectorized Covariance Matrix Model
(VCMM) provides improved performance. However, the associ-
ated optimization problem remains computationally intractable
due to its highly non-convex and multi-dimensional nature.

To alleviate this issue, a sparse estimation strategy has been
proposed, shown to be equivalent to the ML after a pre-whitening
noise transformation when the regularization parameter is prop-
erly chosen. Yet, the resulting cost function remains challenging,
with optimization limited to first-order methods such as the
Proximal Gradient Algorithm (PGA), which suffers from slow
convergence due to strong correlations in the dictionary matrix.

This work exploits the decorrelation induced by the pre-
whitening transform to enable acceleration via a variable stepsize
strategy. The transform increases the allowable stepsize by
reducing the correlation of the dictionary near source directions,
thus significantly improving convergence speed. Furthermore,
the final iterations are shown to be equivalent with a more
computationally demanding second-order algorithm, yielding an
efficient approximation with reduced complexity.

Numerical simulations confirm the predicted speed improve-
ments in the case of 2D DoA estimation.

Index Terms—Noise whitening, Orthogonal dictionary, Sparse
optimization, Second-order

I. INTRODUCTION

DoA estimation arises in numerous applications, including
radar, sonar, and wireless communications. Classical methods
such as MUSIC [1] degrade under limited snapshots or low
Signal-to-Noise Ratio (SNR). Although the ML estimator [2]
is statistically efficient as it achieves the Cramér-Rao Lower
Bound at high SNR, its practical use is hindered by the need
to solve a highly non-convex, multi-dimensional optimization
problem. Several of the aforementioned limitations can be
mitigated using the VCMM [3]–[6], which exploits a Virtual
Array (VA) [7] of N2 virtual antennas, thereby improving
performance in adverse conditions.

DoA estimation from the VCMM can be formulated as
a sparse recovery problem [8], whose effectiveness has
been demonstrated in simulation studies [4]–[6], [9]. A pre-
whitening transform has been introduced [4]–[6] to handle the
correlated estimation error that corrupts the VCMM. Under
this transformation, equivalence between ℓ0-based sparse es-
timators and the ML has been established in the presence of
white Gaussian estimation error [10], [11], enabling efficient
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ML implementation. The estimator’s ℓ0 objective function is
typically optimized using the PGA [12]. Yet, being a first-order
method, the PGA algorithm experiences slow convergence due
to its stepsize, constrained by the high correlation between the
vectors of the dictionary matrix.

Numerous research lines have been explored to accelerate
the PGA algorithm. Nesterov introduced an inertial technique
[13] using an extrapolation step. Gradient preconditioning [14]
methods achieve acceleration at the cost of numerical eval-
uation of the proximity operator. Deep unfolding techniques
[15] have also yielded acceleration. Yet, their interpretability is
limited and their applicability is restricted by the requirement
of large datasets and supervised learning [9]. Finally, pseudo-
second-order [16] and backtracking techniques have also been
proposed.

This paper leverages the pre-whitening transform effects
[11], [17] to substantially accelerate the convergence of the
sparse estimator. The spatial decorrelation between the dictio-
nary matrix vectors after the transform is exploited to select
larger stepsizes at each iteration using Ablin’s accelerated
PGA [18]. The acceleration is analytically justified as a direct
consequence of the improved conditioning after pre-whitening
transform. Furthermore, the last iterations are proven to be
equivalent with a second-order descent algorithm.

II. SIGNAL MODELLING

A. The Vectorized Covariance Matrix Model (VCMM)

Let us assume M impinging narrowband planes waves on
an N -element array with directions θ = {θ1, . . . ,θM} where
θm = {θm,∆m} with θm and ∆m, respectively the azimuth
and elevation angles of the m-th sources. Then, the array
output is:

x(t) =

M∑
m=1

a(θm)sm(t) + n(t) = A(θ)sθ(t) + n(t) (1)

where A(θ) = [a(θ1), . . . ,a(θM )] is the array steering matrix
formed by steering vectors a(θm) ∈ CN , 1 ≤ m ≤ M .
The source signals sm(t) are stacked into the vector sθ(t) =
[s1(t), . . . , sM (t)] ∈ CM . Finally, n(t) ∈ CN refers to a
complex circular white Gaussian noise, independent of the
sources signals ie. E

[
sHθ (t)n(t)

]
= 0, with covariance matrix

E
[
n(t)nH(t)

]
= σ2IN where E [·] denotes the temporal
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mean and IN the identity matrix of size N . Throughout this
paper, the m-th source direction θm = {θm,∆m} is rewritten
as θm = {um, vm} where um = cos(θm) cos(∆m) and
vm = sin(θm) cos(∆m).

The array covariance matrix is then given by:

Rx = E
[
x(t)xH(t)

]
= A(θ)RsA

H(θ) + σ2IN (2)

where Rs = E
[
sθ(t)s

H
θ (t)

]
stands for the sources co-

variance matrix. Assuming temporally decorrelated sources
(∀i ̸= j,E [s∗i (t)sj(t)] = 0), the VCMM observation r [3]–[6]
is obtained from (2) by applying the column-wise vectorization
operator vec(·):

r = vec
(
Rx − σ2IN

)
=

M∑
m=1

b(θm)γm = B(θ)γθ (3)

where B(θ) is the VA [7] steering matrix formed by the
vectors b(θm) = a∗(θm)⊗ a(θm) where ⊗ is the Kronecker
product and γθ = diag(Rs) = [γ1, . . . , γM ]

T the sources
powers vector.

As the true covariance matrix Rx is not accessible, Rx is
replaced by its sample estimate R̂x obtained using K identi-
cally and independently distributed array snapshots x(tk), 1 ≤
k ≤ K. Under temporally uncorrelated noise (ie. ∀i ̸=
j,E

[
nH(ti)n(tj)

]
= 0), R̂x can be written as follows:

R̂x =
1

K

K∑
k=1

x(tk)x
H(tk) = Rx +∆Rx (4)

with ∆Rx a complex Wishart estimation error matrix in-
duced by the finite number of samples. As a consequence
of (4), the VCMM (3) is corrupted by an estimation error
δ = vec (∆Rx):

r = B(θ)γθ + δ (5)

According to the Central Limit Theorem, the complex
Wishart distribution of δ (5) converges towards a complex
Gaussian law CN (0N2×1,Γ,C) for K sufficiently large with
the following moments [19]:

Γ = E
[
δδH

]
= 1

K

(
RT

x ⊗Rx

)
C = E

[
δδT

]
= KΓ (6)

where K denotes the permutation matrix.

B. The pre-whitening transform of the VCMM

As outlined by eq. (6), the VCMM (5) is corrupted by a non-
white Gaussian estimation error δ. Following the methodology
of [10], [11], [17], a pre-whitening transform is performed on
the VCMM (5) converting the initially non-white estimation
error δ into a white Gaussian estimation error. Further details
on this transform can be found in [11]. The transformed
observation is:

y = Ŵr = ŴB(θ)γθ + Ŵδ = Bw(θ)γ + δw (7)

where Ŵ = Γ̂−1/2 =
√
K

(
R̂

−T/2
x ⊗ R̂

−1/2
x

)
is the

whitening matrix, Bw(θ) = ŴB(θ) denotes the transformed
dictionary and δw = Ŵδ the whitened estimation error such
that E

[
δwδ

H
w

]
= IN2 .

III. SPARSE ESTIMATION OF THE DOA

A. Sparse modelling & sparse estimation

Assuming that all sources directions θm = {um, vm} are
comprised within a grid φ = {φ1, . . . ,φG} of G directions
with φg = {υg, νg} the g-th grid direction, a sparse equivalent
of the transformed VCMM (7) can be found:

y = Bw(φ)γ0 + δw (8)

where Bw(φ) = ŴB(φ) with B(φ) = [b(φ1), . . . ,b(φG)]
is an overcomplete dictionary of size N2×G,G≫ N2. γ0 is
an M -sparse vector which has only M non-zero components
corresponding to sources directions. Therefore, an estimate of
γ0 is required to estimate the DoAs. Using the sparsity prior on
γ0, the estimation problem is formulated as the minimization
of an ℓ0-penalized objective:

min
γ∈CG

{Jℓ0(λ,γ) = JLS(γ) + λ∥γ∥0} (9)

where JLS(γ) =
1
2∥y −Bw(φ)γ∥22 and the hyperparameter

λ > 0 is introduced to balance the solution sparsity towards
data fidelity. Throughout this paper, the approach of [10], [11]
is employed to select λ thereby ensuring equivalence between
sparse and ML estimators ie. both criteria share the same
global minimizer.

B. The Proximal Gradient Algorithm

Problem (9) is solved using the well-known PGA algorithm
[12]. One PGA iteration reads:

γ(i+1) = proxλβℓ0

(
γ(i) − βBH

w (φ)(Bw(φ)γ
(i) − y)

)
(10)

with proxλβℓ0(·) the ℓ0-norm proximity operator and β the
stepsize. The convergence towards a local minimizer of JLS

is ensured for stepsize values satisfying β ≤ 1/L where L =
λmax(Hw) is the Lispchitz constant of the gradient of JLS

ie. the largest eigenvalue of Hessian matrix:

Hw = BH
w (φ)Bw(φ) (11)

IV. ACCELERATED PGA THROUGH PRE-WHITENING

A. Ablin’s Accelerated PGA

According to [20], PGA iterations (10) can cast as a
Majorization-Minimization (MM) steps. Formally, a second-
order Taylor expansion of the data fidelity term JLS in the
neighbourhood of γ(i) yields:

JLS(γ) = JLS(γ
(i)) +

(
BH

w (φ)(Bw(φ)γ
(i) − y)

)H

× (γ − γ(i)) + 1
2 (γ − γ(i))HHw(γ − γ(i))

+ o(∥(γ − γ(i))∥22)

(12)

Then, an upper bound of the second-order term in (12) is
introduced yielding QL an upper bound on JLS satisfying
JLS(γ) ≤ QL(γ):

QL(γ) = JLS(γ
(i)) +

(
BH

w (φ)(Bw(φ)γ
(i) − y)

)H

× (γ − γ(i)) + L
2 ∥γ − γ(i)∥22

(13)
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Finally, assuming that the stepsize is β = 1/L, γ(i+1) in (10),
minimizing QL directly gives (10) prior the application of
the proximity operator. Note that with the particular setting
β = 1/L, (10) corresponds to a Gauss-Newton [2] step on
QL whose Hessian matrix is LIG.

Ablin [18] proposed an accelerated algorithm FBS exploit-
ing tighter upper bounds of (12) by leveraging the sparsity of
γ(i). Let us introduce:

S(i) = supp(γ(i)) =

{{
i | γ(i)

g ̸= 0
}

i > 0

{1, . . . , G} , i = 0
(14)

the support of γ(i) at iteration i. Then, a variable stepsize β
(i)
S

is considered at each iteration in (10). The stepsize β
(i)
S =

1/L(i)
S is computed using L(i)

S = λmax(H(i)
w,S) the largest

eigenvalue of the Hessian matrix H(i)
w,S = B

(i)H
w,S (φ)B

(i)
w,S(φ)

(11) computed using B
(i)
w,S(φ) the restriction of Bw(φ) to

column indices associated to non-null components in γ(i).
Then, β

(i)
S is a valid stepsize if supp(γ(i+1)) ⊂ S(i) [18]

where γ(i+1) is obtained by minimizing Q(i)
LS

the correspond-
ing upper bound obtained using L(i)

S which is tighter than QL.
UsingQ(i)

LS
, larger stepsizes β(i)

S = 1/L(i)
S ≥ 1/L can be taken

thus enabling faster convergence. Indeed, in the first iterations
S(i) = {1, . . . , G} leading to the standard stepsize value
whereas in the last iterations S(i) contains only the indices of
the sources directions yielding munch larger stepsize than the
intial stepsize β

(i)
S ≥ β. Hence, tighter upper bounds of (12)

can be exploited and thus larger stepsizes β
(i)
S can be taken

which enables faster convergence. Algorithm 1 summarizes
the method1.

Algorithm 1 Ablin’s [18] accelerated PGA

Input: y,γ(0),Bw(φ), λ > 0
Output: γ(i)

1: while stopping criterion is not satisfied do
2: Compute S(i) = supp(γ(i)) and βS = 1

LS

3: Compute γ̃(i+1) using PGA step (10) with βS
4: if supp(γ̃(i+1)) ⊂ S(i) then
5: γ(i+1) ← γ̃(i+1)

6: else
7: Redo the PGA step 3 using β = 1

L to obtain γ(i+1)

8: end if
9: end while

10: return γ(i)

Fig.1 presents the different upper bounds Q(i)
LS

prior (obser-
vation r (5)) and after the pre-whitening transform (observa-
tion y (7)). It follows that all upper bounds are tighter than
the initial ones. Upper bounds obtained after the pre-whitening
transform are substantially flatter. Thereby, Fig.1 indicates that
significantly larger stepsizes can be taken after the transform
leading to consequent speed improvements.

1Note that algorithm 1 can be interpreted as a Variable Forward Backward
Metric (VMFB) [21] scheme as it each iteration consists in a preconditionned
PGA step with preconditionner U = (βS(i) )−1IG

Fig. 1. Upper bounds Q(i)
LS

projections onto the sources directions prior
and after the pre-whitening transform for several PGA iterations. Dashed
lines and the red circle represent the global minimum γ̂ = [γ̂1, γ̂2]

T

coordinates for each criterion. M = 2 sources of directions {θ1,θ2} =
{(0.5,−0.30) , (−0.75, 0.29)} (leading to spatial correlation r2A(θ1,θ2) =
0.3) are considered with K = 400 and SNR = 10dB along the array defined
in section V.

B. Distance between upper bounds and the true function

The subsection objective is to show how the pre-whitening
transform (7) leads to tighter upper bounds and so provides
substantial acceleration. To this end, the distance:

ε
(i)
1 = |L

(i)
S
2 ∥γ−γ(i)∥22− 1

2 (γ−γ(i))HH(i)
w,S(γ−γ(i))| (15)

between the true quadratic term in (12) and its upper bound
is computed and shown to be significantly reduced after the
transform. Let us assume that γ(i) has support S(i) and
that β

(i)
S is a valid stepsize. According to IV-A and [18],

supp(γ) ⊂ S(i). Then, an Eigenvalue Decomposition (EVD)
on H(i)

w,S yields:

1
2 (γ − γ(i))HH(i)

w,S(γ − γ(i)) = 1
2

∑
g∈S

λg|γg − γ(i)
g |2

= 1
2

∑
g∈S\{gmax}

λg|γg − γ(i)
g |2 +

L(i)
S
2 |γgmax

− γ(i)
gmax
|2

(16)

where λg is the g-th eigenvalue of H(i)
w,S and gmax the index

corresponding to L(i)
S = λmax(H(i)

w,S). Since:

L(i)
S
2 ∥γ−γ(i)∥22 =

L(i)
S
2 |γgmax −γ(i)

gmax
|2+ L(i)

S
2

∑
g∈S\{gmax}

|γg−γ(i)
g |2

(17)
inserting (16) into (15) gives:

ε
(i)
1 =

L(i)
S
2

∑
g∈S\{gmax}

(
1− λg

L(i)
S

)
|γg − γ(i)

g |2 (18)

The analysis of [11] revealed that the pre-whitening
transform reduces the conditioning of the Hessian matrix

η(H(i)
w,S) =

λmax(H(i)
w,S)

λmin(H(i)
w,S)

such that η(H(i)
w,S)→ 1. This yields

λmax(H(i)
w,S) → λmin(H(i)

w,S) and so 1 − λg

L(i)
S
→ 0. Hence
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ε
(i)
1 → 0 which makes the upper bound closer to the true

function thereby enhancing the algorithm convergence.
In the special case of M = 2 impinging sources, assuming

without loss of generality that gmax = 1, (18) becomes:

ε
(i)
1 =

rBw (θ1,θ2)
1+rBw (θ1,θ2)

× |γ2 − γ
(i)
2 |2 (19)

which connects ε
(i)
1 to the sources spatial correlation

rBw
(θ1,θ2) =

bH
w (θ1)bw(θ2)

∥bw(θ1)∥2∥bw(θ2)∥2
computed for steer-

ing vectors bw(θ1),bw(θ2). Again, the spatial correlation
rBw

(θ1,θ2) after the transform (using Bw(φ)) tends to 0 and
so ε

(i)
1 which is not the case prior the transform (using B(φ)

and so rB in (19) instead of rBw ).
Proof: Inserting λmax(H(i)

w,S) = 1 + rBw(θ1,θ2) and
λmin(H(i)

w,S) = 1− rBw
(θ1,θ2) [11] directly yields (19).

C. Equivalence with a second-order algorithm
This subsection purpose is to demonstrate equivalence be-

tween last iterations of the accelerated PGA algorithm after the
pre-whitening transform and Gauss-Newton iterations [2] in
the special case of M = 2 impinging sources. Assuming that
the support S(i) contains only the two indices corresponding
to sources directions {θ1,θ2}, Gauss-Newton iterations can
be written as:

γ(i+1) = γ(i) − (H(i)
w,S)

−1∇J (i)
LS,S(γ

(i)) (20)

with ∇J (i)
LS,S =

(
BH

w,S(i)(φ)(Bw,S(i)(φ)γ(i) − y)
)

the gra-

dient and H(i)
w,S the Hessian matrix (11) both obtained using

only the indices associated to sources directions. The gradient
step of PGA iterations (10) becomes:

γ(i+1) = γ(i) − 1

λmax(H(i)
w,S)

I2∇J (i)
LS,S(γ

(i)) (21)

Eq. (21) is similar to (20) except that the inverse Hessian
matrix is replaced with 1

λmax(H(i)
w,S)

I2 in (21). Hence, equiva-

lence between (21) and (20) relies on the distance between
1

λmax(H(i)
w,S)

I2 and (H(i)
w,S)

−1. Then, the following can be

derived:

ε
(i)
2 = ∥(H(i)

w,S)
−1− 1

λmax(H(i)
w,S)

I2∥ = 2rBw (θ1,θ2)

(1+rBw (θ1,θ2))
2 (22)

where ∥·∥ = λmax(·) is the matrix spectral norm.
Since the pre-whitening transform decorrelates the dic-

tionary vectors in the sources directions [11], [17] ie.
rBw(θ1,θ2) ≈ 0, the last iterations of the accelerated PGA
after the pre-whitening transform are equivalent to Gauss-
Newton as ε

(i)
2 → 0.

Proof: Using an EVD, H(i)
w,S can be rewritten as:

H(i)
w,S = λmax(H(i)

w,S)e1e
H
1 + λmin(H(i)

w,S)e2e
H
2 (23)

where e1 and e2 are the eigenvectors of H(i)
w,S . Inserting

λmin(H(i)
w,S) = λmax(H(i)

w,S)−2rBw
(θ1,θ2) into (23) yields:

H(i)
w,S = λmax(H(i)

w,S)
(
e1e

H
1 + e2e

H
2

)
− 2rBw

(θ1,θ2)e2e
H
2

= λmax(H(i)
w,S)I2 − 2rBw

(θ1,θ2)e2e
H
2

(24)

since e1e
H
1 + e2e

H
2 = I2. A first-order Taylor expansion of

(H(i)
w,S)

−1 (24) then gives:

(H(i)
w,S)

−1 ≈ 1

λmax(H(i)
w,S)

I2 +
2rBw (θ1,θ2)

λ2
max(H

(i)
w,S)

e2e
H
2 (25)

Finally, substituting (25) in (22) completes the proof as
∥e2eH2 ∥ = 1 since it is an orthogonal projector.

V. NUMERICAL SIMULATIONS

A. Experimental setup

An 6-element array with 5 antennas distributed around a
circle of radius r = 0.8λ0 where λ0 is the wavelength and
one central antenna is considered. M = 2 sources with
SNR = 10dB and K = 400 array snapshots are considered.
An oracle grid containing the ML estimates is employed to
remove any grid bias. To alleviate the computational cost
of computing the stepsize βS = 1/LS in (??), the EVD is
replaced by the power methods. The ℓ0 penalty is replaced
with the Continuous Exact ℓ0 penalty (CEL0) [22] which
preserves the ℓ0 criterion global minimizer while drastically
reducing the number of local minima. λ is chosen using
[23] for the non-transformed observation r (5) whereas [10]
is employed when using the transformed observation y (7).
Finally, the PGA is initialized with γ(0) = 0.

B. Convergence analysis

Fig.2 presents the convergence curves obtained prior and
after the pre-whitening transform using both standard and
accelerated PGA with a grid step of 0.1 on both direc-
tions. Corresponding stepsizes are displayed on the bot-
tom subfigure. M = 2 sources of directions {θ1,θ2} =
{(0.5,−0.30) , (−0.75, 0.29)} are considered leading to lead-
ing to spatial correlation r2A(θ1,θ2) = 0.3. First, the transform
slightly accelerates the standard algorithm as 759 iterations
are required instead of 1257 to reach the stopping criterion
on ∥γ(i+1) − γ(i)∥22/∥γ(i)∥22 ≤ 10−6. Using the accelerated
algorithm, the transform allows extremely fast and stable
convergence in 12 iterations compared to the highly unstable
253 iterations without the transform. Fig.2 confirms the speed
improvement obtained combining the transform with the accel-
erated FBS algorithm as 12 iterations are required to achieve
convergence 118.5 compared to without the transform.

C. Number of FLOPS

To investigate the connection between the spatial correlation
and the convergence revealed by subsections IV-B and IV-C,
sources directions are chosen to satisfy a specified spatial
correlation r2A (θ1,θ2) defined using the array steering matrix.
Then, the number of FLOPS is measured both prior and
after the transform as a function of r2A (θ1,θ2). As shown
by Fig.3, without the transform, the algorithm can not be
accelerated as the FLOPS number is greater than 109 even
for spatially decorrelated sources. Using the transform and the
standard algorithm, a first improvement in the computational
cost is observed. Finally, the transform combined with the
accelerated algorithm yields an efficient algorithm with less
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Fig. 2. Top: Convergence curves prior and after the pre-whitening transform
with J ⋆

ML the optimal value of JLS . Middle: corresponding stepsizes at each
iteration. Bottom: Mean number of iterations on 100 trials.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
106
107
108
109

Spatial correlation r2
A(θ1,θ2)

F
LO

P
S

0.05 0.1 0.15 0.2
105
107
109

Grid stepsize

F
LO

P
S

Standard FBS, observation r Accelerated FBS, observation r

Standard FBS, observation y Accelerated FBS, observation y

MUSIC

Fig. 3. Number of FLOPS as a function of the sources spatial correlation
(top) and the grid stepsize (bottom). Both u and v grid stepsizes are equal.

than 107 FLOPS even highly for highly correlated sources.
The number of FLOPS is increasing as more iterations are
required to achieve convergence as predicted in subsections
IV-B and IV-C. The previous experiment is repeated with a
fixed correlation of r2A (θ1,θ2) = 0.3 and a varying grid
stepsize. Again, combining the transform and the accelerated
algorithm yields an efficient 2D ML implementation even for
thin grids.

VI. CONCLUSION

In this paper, the pre-whitening transform effects are lever-
aged to accelerate the sparse estimator convergence. By spa-
tially decorrelating the dictionary vectors, a fast implemen-
tation of 2D ML-DoA estimation is proposed. Furthermore,
equivalence between the algorithm’s last iterations and a
second-order descent scheme is proven. Numerical simulations
demonstrated the proposed algorithm’s efficiency.
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[11] T. Aussaguès, A. Ferréol, A. Delmer, and P. Larzabal, “Ml-doa esti-
mation using a sparse representation of array covariance with a non-
standard noise,” Submitted to Signal Processing, 2025.

[12] P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in signal
processing,” 2010.

[13] Y. Nesterov, “A method for solving the convex programming problem
with convergence rate O(1/k2),” Proceedings of the USSR Academy of
Sciences, vol. 269, pp. 543–547, 1983.

[14] M. Savanier, E. Chouzenoux, J.-C. Pesquet, and C. Riddell, “Unmatched
preconditioning of the proximal gradient algorithm,” IEEE Signal Pro-
cessing Letters, vol. 29, pp. 1122–1126, 2022.

[15] K. Gregor and Y. LeCun, “Learning fast approximations of sparse
coding,” in International Conference on Machine Learning, 2010.

[16] S. Becker, J. Fadili, and P. Ochs, “On quasi-newton forward–backward
splitting: Proximal calculus and convergence,” SIAM Journal on Opti-
mization, vol. 29, 01 2018.
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