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Abstract—This paper extends the classical Unitary ESPRIT in
DFT beamspace algorithm to the oversampled DFT beamspace.
By deriving the shift-invariance property in the DFT beamspace
with an arbitrary integer oversampling factor, a closed-form
formulation is obtained that enables real-valued computations for
high-resolution direction-of-arrival (DoA) estimation. Compared
with the classical Unitary DFT ESPRIT algorithm, which is
limited to an oversampling factor of 1, the proposed method
projects the antenna space signals with oversampled DFT beams,
allowing better focusing of the sensing power on the sector of
interest (SoI). Simulations show that, when some information
about the SoI is available, the proposed method significantly
outperforms both antenna space ESPRIT and classical Unitary
DFT ESPRIT, particularly in low SNR conditions with closely
spaced sources.

Index Terms—Unitary ESPRIT, oversampled DFT beamspace,
gridless DoA estimation.

I. INTRODUCTION

Accurate direction-of-arrival (DoA) estimation is beneficial
for directional wireless communications, such as precise beam-
forming and localization. Traditional DoA estimation is often
performed in the antenna element space domain, where the
computational complexity increases with the number of anten-
nas. To address this issue, beamspace processing transforms
the received signals into a lower-dimensional representation,
which reduces the complexity while preserving accurate es-
timation performance [1]. The beamforming transformation
could be realized either through a digital transformation of
the antenna space received signals, or via analog beam-
forming using analog phase shifters [2]. Since DFT beams
can allow better focusing of the sensing power towards the
sector of interest (SoI) [3] and can be easily implemented
using analog phase shifters with discrete phases and constant
amplitudes, they are commonly used for beamforming trans-
formations. By deriving the shift-invariance property in the
beamspace, closed-form gridless DoA estimation algorithms,
such as beamspace ESPRIT [4] and Unitary ESPRIT [5],
[6], have been developed, which allow high-resolution DoA
estimation with a low computational complexity. Furthermore,
oversampling in the beamspace has been introduced as an
effective strategy to enhance the beamspace resolution [7]. By
increasing the number of sampled beams beyond the number
of physical antennas, oversampling enhances the accuracy of

DoA estimation algorithms, especially in low signal-to-noise
ratio (SNR) environments.

Although DFT beamspace methods have been extensively
studied, the application of an oversampled DFT beamspace
within the Unitary ESPRIT framework has not been addressed
in prior literature. In this paper, we extend the classical Unitary
ESPRIT algorithm to support DFT beamspace processing
with arbitrary oversampling factors. By oversampling the DFT
beamspace, the DoA estimation accuracy and the angular
resolution are improved. This is due to the fact that the over-
sampled DFT beams focus the sensing power more efficiently
on the SoI. Unlike root-MUSIC, the proposed oversampled
approach enables low-complexity closed-form estimation with
real-valued computations, which makes it suitable for analog
beamforming systems and hardware-constrained deployments.
The contributions of this paper are as follows: First, we
derive the closed-form expressions for Unitary ESPRIT in
the full oversampled DFT beamspace by extending the shift-
invariance equations to enable arbitrary oversampling factors.
Next, we provide the closed-form expressions for the reduced-
dimensional selection matrices when a reduced oversampled
DFT beamspace is applied to focus on a particular spatial
SoI. In the following, we abbreviate classical Unitary ESPRIT
in DFT beamspace, Unitary ESPRIT in oversampled DFT
beamspace, and Unitary ESPRIT in antenna space (element
space) as DFT-UESPRIT, DFT-O-UESPRIT, and UESPRIT,
respectively.

Notation: Non-bold, lower-case bold-faced and upper-case
bold-faced letters denote scalars, vectors, and matrices, re-
spectively. The symbols (·)H , (·)T , (·)∗ and (·)+ represent
conjugate transpose, transpose, conjugate, and pseudo-inverse
of a matrix or vector, respectively. The operator diag(x)
constructs a diagonal matrix with the elements of the vector
x on the diagonal of the matrix. For a vector a, [a]m denotes
its mth entry, whereas for a matrix A, [A][m,n] represents its
(m,n)th entry. The notation A(i, :) refers to the i-th row of a
matrix A with all columns, and A(i, :)b refers to the i-th row
of a matrix A, with columns indexed by the numbers in the
vector b. The Matrix Im denotes an identity matrix of size
m × m. The operators tan−1(·) represents inverse trigono-
metric functions. Furthermore, the operator E{·} denotes the
expectation operator, Re{a} and Im{a} denote the real and
imaginary parts of a complex number a, respectively.
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II. PROBLEM FORMULATION

A. System Model

Consider a uniform linear array (ULA) composed of M
isotropic antenna elements with an inter-element spacing of
∆. Assume that d narrowband, plane-wave signals impinge
on the array with DoAs denoted by θ = [θ1, · · · , θd]. The
received signal at time t is given by

x(t) =

d∑
i=1

a(µi)si(t) + z(t) ∈ CM×1, (1)

where si(t) ∈ C denotes the impinging signal, and a(µi) ∈
CM×1 represents the array steering vector of the i-th source.
For the sake of real-valued processing, we take the array
center as the phase reference such that the steering vector
is conjugate centrosymmetric. For instance, if the number
of antennas M is odd, the steering vector is given by

a(µi) =
[
e−j(M−1

2 )µi , · · · , e−jµi , 1, ejµi , ej(
M−1

2 )µi

]T
∈

CM×1, where µi =
2π∆
λ sin(θi) denotes the spatial frequency,

with λ being the wavelength, and z(t) ∈ CM×1 represents
zero-mean circularly symmetric complex Gaussian noise with
variance σ2

z .
By collecting N signal snapshots, the received signal in the

antenna space can be expressed in matrix form as

X = AS+ Z ∈ CM×N , (2)

where X = [x(1), · · · ,x(N)] ∈ CM×N is the matrix of the
received signals, A = [a(µ1), · · · ,a(µd)] ∈ CM×d is the
steering matrix, and Z = [z(1), · · · , z(N)] ∈ CM×N is the
noise matrix. Then, we apply the beamspace transformation
to the received signals in the antenna space as follows

Y
(O)

DFT = W
(O)H

B X = W
(O)H

B AS+W
(O)H

B Z ∈ CB×N , (3)

where W
(O)H

B ∈ CB×M is the DFT beamforming ma-
trix, whose columns are a subset of the scaled DFT ma-
trix W

(O)H

M ∈ COM×M , where B is the number of
beams, and the oversampling factor is denoted by O, with
O ∈ N. The k-th column of W

(O)
M is given by wk =

e−j(M−1
2 )γ

(O)
k [1, ejγ

(O)
k , · · · , ej(M−1)γ

(O)
k ]T that steers at the

frequency γ
(O)
k = 2π

OM k, for k = 0, 1, · · · , OM − 1. Note
that matrix W

(O)
M is left Π-real that satisfies the condition

ΠMW
(O)∗

M = W
(O)
M , where ΠM ∈ RM×M is the exchange

matrix, with ones along its anti-diagonal and zeros elsewhere.
Afterwards, we proceed to the next step of DoA estimation in
DFT beamspace.

B. Review of Unitary ESPRIT in DFT Beamspace

We first review the classical DFT-UESPRIT algorithm, as
the proposed method builds upon the classical one. In this
context, we consider the non-oversampling case, i.e., O = 1.
In this case, the data model (3) reduces to

Y
(1)

DFT = W
(1)H

B X = W
(1)H

B AS+W
(1)H

B Z ∈ CB×N . (4)

We define B(1) = W
(1)H

B A ∈ RB×d as the DFT beamspace
steering matrix. According to [8], B(1) satisfies a shift invari-
ance property that can be written as

Γ
(1)
1 B(1)Ω = Γ

(1)
2 B(1), (5)

where Ω = diag
(
[tan

(
µ1

2

)
, · · · , tan

(
µd

2

)
]
)
∈ Rd×d, Γ(1)

1 ∈
R(B−1)×B and Γ

(1)
2 ∈ R(B−1)×B are the pre-defined real-

valued selection matrices in the reduced-dimensional DFT
beamspace.

Let the d dominant left singular vectors of the real-valued
matrix [Re{Y(1)

DFT}, Im{Y(1)
DFT}], which automatically achieves

forward-backward averaging [8], be contained in the columns
of the matrix U

(1)
s ∈ RB×d. Asymptotically, U(1)

s and B(1)

span the same d-dimensional signal subspace, implying that
there exists a non-singular matrix TB ∈ Rd×d, such that
B

(1)
M = U

(1)
s TB . Substituting this relationship into (5) yields

Γ
(1)
1 U(1)

s Υ(1) = Γ
(1)
2 U(1)

s , whereΥ(1) = TBΩT−1
B . (6)

Note that Ω contains the eigenvalues of the solution to Υ(1),
and one solution could be the Least Squares (LS) solution,
given by

Υ̂LS = (Γ
(1)
1 U(1)

s )+Γ
(1)
2 U(1)

s . (7)

Then, we can estimate the spatial frequencies as follows

Υ̂LS = QΛQ−1, µ̂i = 2 tan−1([Λ][i,i]), 1 ≤ i ≤ d, (8)

where the first equation in (8) performs the eigenvalue decom-
position (EVD).

III. UNITARY ESPRIT IN OVERSAMPLED DFT
BEAMSPACE

In this paper, we extend the DFT-UESPRIT algorithm to
an oversampled DFT beamspace representation. The key is
to extend the shift-invariance equation in (5) and derive the
closed-form selection matrices when O ≥ 1. Section III-A
provides the derivation in its most general form, where the
beamspace projection is based on the full oversampled DFT
codebook. Section III-B discusses the reduced dimensional
case, where the projection is performed by using a subset
of the oversampled DFT codebook. This is typically used
when the SoI is available, as it allows sufficient focusing
of the sensing power over a smaller spatial coverage with
oversampled DFT beams, as described in [3] for the case
without oversampling.

A. Unitary ESPRIT in Full Oversampled DFT Beamspace

We define the beamspace steering vector as b
(O)
M (µi) =

W
(O)H

M a(µi) = [b
(O)
0 (µi), b

(O)
1 (µi), · · · , b(O)

OM−1(µi)]
T ∈

ROM×1. Then we need to find the relationship between the
beamspace coefficients to derive the shift-invariance relation.
When O = 1, the shift-invariance property relates adjacent
beamspace components, namely b

(1)
k (µi) and b

(1)
k+1(µi). With

oversampling, the adjacent components in the DFT beamspace
are now separated by O indices. Therefore, to analyze the
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shift-invariance relation for the oversampled case, we exam-
ine the beamspace components b

(O)
k (µi) and b

(O)
k+O(µi) (for

k = 0, 1, 2, · · · , OM − 1) as follows

b
(O)
k (µi) = w

(O)H

k a(µi) =
sin

[
M
2

(
µi − k 2π

OM

)]
sin

[
1
2

(
µi − k 2π

OM

)] ,

b
(O)
k+O(µi) = w

(O)H

k+O aM (µi) =
sin

[
M
2

(
µi − (k +O) 2π

OM

)]
sin

[
1
2

(
µi − (k +O) 2π

OM

)]
=

− sin
[
M
2

(
µi − k 2π

OM

)]
sin

[
1
2

(
µi − (k +O) 2π

OM

)] .
Notice that the numerator of b(O)

k+O(µi) is the negative of that
of b(O)

k (µi). Therefore, these two components are related as

b
(O)
k (µi) · sin

[
1

2

(
µi − k · 2π

OM

)]
=

− b
(O)
k+O(µi) · sin

[
1

2

(
µi − (k +O) · 2π

OM

)]
.

(9)

Using sin(α−β) = sin(α) cos(β)−cos(α) sin(β) in (9) yields

b
(O)
k (µi)

[
sin
(µi

2

)
cos

(
γ
(O)
k

2

)
− cos

(µi

2

)
sin

(
γ
(O)
k

2

)]
=

− b
(O)
k+O(µi)

[
sin
(µi

2

)
cos

(
γ
(O)
k+O

2

)
− cos

(µi

2

)
sin

(
γ
(O)
k+O

2

)]
,

rearranging terms leads to

tan
(µi

2

)[
b
(O)
k (µi) cos

(
γ
(O)
k

2

)
+ b

(O)
k+O(µi) cos

(
γ
(O)
k+O

2

)]

= b
(O)
k (µi) sin

(
γ
(O)
k

2

)
+ b

(O)
k+O(µi) sin

(
γ
(O)
k+O

2

)
.

(10)

Hence, we could define two real-valued selection matrices
Γ
(O)
1 and Γ

(O)
2 , each of size OM ×OM , to relate every two

components that are separated by O indices, i.e., b
(O)
k (µi)

and b
(O)
k+O(µi). Additionally, for the components with index

k starting from (OM − O) to (OM − 1), we can compute
b
(O)
k+O(µi) for k = OM −O as

b
(O)
OM (µi) =

sin
[
M
2

(
µi −OM 2π

OM

)]
sin
[
1
2

(
µi −OM 2π

OM

)] =
(−1)M · sin

(
M
2
µi

)
− sin

(
1
2
µi

)
= (−1)M−1b

(O)
0 (µi),

(11)

similarly, we have

b
(O)
OM+1(µi) = (−1)M−1b

(O)
1 (µi), (12)

...

b
(O)
OM+O−1(µi) = (−1)M−1b

(O)
O−1(µi), (13)

Inserting these relationships into (10) for k ∈ {OM −
O, · · · , OM−1}, we have equations (14) to (16) on the top of
the next page. Compiling all OM equations in vector form
for 0 ≤ k ≤ OM − 1 yields a shift-invariance relation for
b
(O)
M (µi)

tan
(µi

2

)
Γ

(O)
1 b

(O)
M (µi) = Γ

(O)
2 b

(O)
M (µi). (19)

The selection matrices Γ
(O)
1 and Γ

(O)
2 for O = 2 are defined

in equations (17) and (18) on the top of the next page, and
this can be generalized to an arbitrary O by inserting (O− 1)
zeros between two sine (or cosine) coefficients in each row of
the selection matrices. Note that when O = 1, the selection
matrices reduce to the non-oversampled case, as derived in
[8]. Notice that the last O rows of Γ(O)

1 and Γ
(O)
2 are a linear

combination of the other rows, meaning that these selection
matrices are of rank OM −O.

With d sources, the beamspace steering matrix is given by
B

(O)
M = [b

(O)
M (µ1),b

(O)
M (µ2), · · · ,b(O)

M (µd)] ∈ ROM×d. The
shift-invariance relations for the steering vectors b(O)

M (µi) can
be combined into a shift-invariance equation

Γ
(O)
1 B

(O)
M Ω = Γ

(O)
2 B

(O)
M , (20)

where Ω = diag[
(
tan

(
µ1

2

)
· · · tan

(
µd

2

))
]. Similar to Unitary

DFT ESPRIT, the signal subspace U
(O)
s in the oversampled

DFT beamspace is obtained as the d dominant left singular
vectors of the real-valued oversampled beamspace measure-
ment matrix [Re{Y(O)

DFT}, Im{Y(O)
DFT}]. Asymptotically, U

(O)
s

and B
(O)
M span the same d-dimensional signal subspace, i.e.,

there exists a non-singular matrix TB ∈ Rd×d, such that
B

(O)
M = U

(O)
s TB . Similar to (6), this yields

Γ
(O)
1 U(O)

s Υ(O) = Γ
(O)
2 U(O)

s ,whereΥ(O) = TBΩT−1
B . (21)

Following the steps (7) - (8), we can solve for Υ(O) and
determine the DoAs in the oversampled DFT beamspace.

B. Unitary ESPRIT in Reduced Oversampled DFT Beamspace

Although oversampling increases the total number of beams,
the reduced beamspace technique still enables dimensionality
reduction. When the SoI for the DoAs is available, we can
focus the sensing power on the SoI by using a selected subset
of the oversampled DFT beams. This is achieved by perform-
ing the beamspace transformation using only a specific subset
of the oversampled DFT codebook, and selecting only the
corresponding subset of rows and columns from the selection
matrices Γ

(O)
1 and Γ

(O)
2 .

We first derive a closed-form expression for the selection
matrices in the reduced beamspace. We choose B consecutive
beams from the rows of the oversampled DFT matrix W

(O)H

M

to construct a SoI. Let the indices of these chosen beams be
sorted in the vector bsoi ∈ RB×1. Notably, the condition B >
O must be met to ensure that at least one invariance equation
can be obtained. Clearly, these B consecutive beams yield
(B−O) invariance equations. For the p-th invariance equation
(p = 1, 2, · · · , B − O), we denote that it relates ip-th and
(ip + O)-th beam. Based on the definition of the selection
matrices, the ip-th row of Γ

(O)
1,B ∈ R(B−O)×B and Γ

(O)
2,B ∈

R(B−O)×B relate the ip-th and (ip +O)-th beams. Therefore,
the corresponding selection matrices are derived as

Γ
(O)
1,B(p, :) = Γ

(O)
1 (ip, :)bsoi , Γ

(O)
2,B(p, :) = Γ

(O)
2 (ip, :)bsoi . (22)

To provide concrete examples, we illustrate the process of
selecting appropriate selection matrices corresponding to the
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tan

(
µi

2

)
·
[
cos

γ
(O)
OM−O

2

 · b(O)
OM−O(µi) + cos

(
γ
(O)
OM

2

)
· b(O)

OM (µi)︸ ︷︷ ︸
(−1)Mb

(O)
0 (µi)

]
= sin

γ
(O)
OM−O

2

 · b(O)
OM−O(µi) + sin

(
γ
(O)
OM

2

)
· b(O)

OM (µi)︸ ︷︷ ︸
0

, (14)

tan

(
µi

2

)
·
[
cos

γ
(O)
OM−O+1

2

 · b(O)
OM−O+1(µi)+cos

γ
(O)
OM+1

2

 · b(O)
OM+1(µi)

︸ ︷︷ ︸
(−1)M cos

 γ
(O)
1
2

b
(O)
1 (µi)

]
= sin

γ
(O)
OM−O+1

2

 · b(O)
OM−O+1(µi)+sin

γ
(O)
OM+1

2

 · b(O)
OM+1(µi)

︸ ︷︷ ︸
(−1)M sin

 γ
(O)
1
2

b
(O)
1 (µi)

,

(15)...

tan

(
µi

2

)
·
[
cos

γ
(O)
OM−1

2

 ·b(O)
OM−1(µi)+cos

γ
(O)
OM+O−1

2

 · b(O)
OM+O−1(µi)

︸ ︷︷ ︸
(−1)M cos

 γ
(O)
O−1
2

b
(O)
O−1

(µi)

]
= sin

γ
(O)
OM−1

2

 ·b(O)
OM−1(µi)+sin

γ
(O)
OM+O−1

2

 · b(O)
OM+O−1(µi)

︸ ︷︷ ︸
(−1)M sin

 γ
(O)
O−1
2

b
(O)
O−1

(µi)

,

(16)

Γ
(2)
1 =



1 0 cos

(
γ
(2)
2
2

)
0 · · · 0 0 0

0 cos

(
γ
(2)
1
2

)
0 cos

(
γ
(2)
3
2

)
· · · 0 0 0

...
...

...
... · · ·

...
...

...

0 0 0 0 · · · cos

(
γ
(2)
2M−3

2

)
0 cos

(
γ
(2)
2M−1

2

)

(−1)M 0 0 0 · · · 0 cos

(
γ
(2)
2M−2

2

)
0

0 (−1)M cos

(
γ
(2)
1
2

)
0 0 · · · 0 0 cos

(
γ
(2)
2M−1

2

)



(17)

Γ
(2)
2 =



0 0 sin

(
γ
(2)
2
2

)
0 · · · 0 0 0

0 sin

(
γ
(2)
1
2

)
0 sin

(
γ
(2)
3
2

)
· · · 0 0 0

...
...

...
... · · ·

...
...

...

0 0 0 0 · · · sin

(
γ
(2)
2M−3

2

)
0 sin

(
γ
(2)
2M−1

2

)

0 0 0 0 · · · 0 sin

(
γ
(2)
2M−2

2

)
0

0 (−1)M sin

(
γ
(2)
1
2

)
0 0 · · · 0 0 sin

(
γ
(2)
2M−1

2

)



(18)

(a) M = 16 antennas, O = 2 (b) M = 16 antennas, O = 4
Fig. 1: Beam patterns of the reduced beamspace for B = 10
with different oversampling factors.

chosen SoI. Consider a ULA with M = 16 antenna elements.
We use two different oversampling factors, O = 2 and O = 4.
For both cases, we select B = 10 consecutive beams to form
the SoI by using specific rows from the oversampled DFT
matrix. Specifically, for O = 2, we employ rows 19 to 28
of W

(2)H

M ∈ C32×16, and for O = 4, we use rows 40 to 49
of W

(4)H

M ∈ C64×16. The corresponding beam patterns are
illustrated in Fig. 1a and Fig. 1b, respectively. The sparsity

(a) M = 16 antennas, O = 2 (b) M = 16 antennas, O = 4

Fig. 2: Sparsity structure of the full-dimensional selection
matrices Γ(O)

1 and Γ
(O)
2 as well as examples of how to choose

reduced-dimensional selection matrices of size (B − O)× B
for B = 10.

structure of the complete selection matrices for different
oversampling factors, namely Γ

(2)
1 (or Γ

(2)
2 ) ∈ R32×32 and

Γ
(4)
1 (or Γ

(4)
2 ) ∈ R64×64, is depicted in Fig. 2a and Fig. 2b,

respectively. In these figures, blue-colored blocks denote the
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entries that may be nonzero, the red-colored areas represent
the subblocks corresponding to the chosen SoI as shown in
Fig. 1. From these subblocks, we obtain the selection matrices
corresponding to the SoI. In particular, for O = 2, we have
Γ
(2)
1,B (or Γ

(2)
2,B) ∈ R8×10, and for O = 4, the respective

selection matrices are Γ
(4)
1,B (or Γ(4)

2,B) ∈ R6×10.

IV. SIMULATION RESULTS

In this section, we assess the performance of the proposed
1-D oversampled DFT ESPRIT algorithm with a focus on
the DoA estimation accuracy and resolution. Simulations
were conducted using a ULA with 16 antenna elements. The
antenna spacing is set to ∆ = λ

2 , and the number of snapshots
per trial is N = 100. The accuracy of the DoA estimates is
evaluated by calculating the root mean squared error (RMSE).
The RMSE is computed using 20, 000 Monte-Carlo trials.

To evaluate the estimation performance of DFT-O-
UESPRIT, we conduct simulations at different SNRs ranging
from 0 dB to 20 dB. Two equal-power uncorrelated sources are
simulated at θ1 = −40◦ and θ2 = −38◦. The proposed DFT-
O-UESPRIT is compared with DFT-UESPRIT and UESPRIT.
The oversampling factors are set to O = 2, 4, 8. To ensure
a fair comparison, 10 beams closest to the sources are used
for all oversampling factors, as well as for DFT-UESPRIT.
Note that the DoAs of the sources, the corresponding beams,
and the resulting reduced-dimensional selection matrices are
depicted in Fig. 1 and Fig. 2 for O = 2 and O = 4. Fig. 3a
shows the RMSE (in degrees) as a function of the SNR for
UESPRIT, DFT-UESPRIT, and DFT-O-UESPRIT with differ-
ent oversampling factors. For comparison, the deterministic
Cramér-Rao bound (CRB) [9] is also shown. It is clear that
the RMSE for DFT-O-UESPRIT is lower than that of the
non-oversampled case, and this is more significant in the low
SNR region. As the oversampling factor increases, the RMSE
decreases. Furthermore, we can observe a saturation pattern for
increasing oversampling factors, such as O = 4 and O = 8.

In addition, we evaluate whether DFT-O-UESPRIT provides
an improved angular resolution compared to DFT-UESPRIT
and UESPRIT. The simulations are conducted with a fixed
SNR of 20 dB. The source separation ∆θ represents the
angular distance between two sources varying from 0.1 to 2
degrees, with the first source located at θ1 = −40◦ and the
second at θ2 = θ1+∆θ. The results are shown in Fig. 3b. It is
observed that DFT-O-UESPRIT achieves a lower RMSE than
UESPRIT and DFT-UESPRIT, indicating that oversampling
improves ESPRIT’s resolution for closely spaced sources.
Furthermore, we can also observe a performance saturation
for O = 4 and O = 8.

V. CONCLUSIONS AND FUTURE WORK

This paper extends the classical Unitary ESPRIT in DFT
beamspace algorithm to support oversampled DFT beamspace
processing with an arbitrary integer oversampling factor. By
exploiting the beamspace shift-invariance property in the over-
sampled DFT beamspace, a closed-form formulation with real-
valued selection matrices has been derived to allow gridless
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Fig. 3: DoA estimation accuracy comparison.

high-resolution DoA estimation. The derivation is not straight-
forward since the sparsity structure of the resulting selection
matrices depends on the oversampling factor as illustrated in
Fig. 2. Simulations show that, when the SoI is available or can
be estimated, the proposed method significantly outperforms
both UESPRIT and DFT-UESPRIT, especially in the low SNR
regime with closely spaced sources.
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