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Abstract—Using One-bit analog-to-digital converters (ADCs)
instead of high-precision counterparts for direction-of-arrival
(DOA) estimation is a promising alternative to considerably reduce
power consumption and manufacturing transceiver costs. However,
these benefits come at the cost of information loss, as one-bit
ADC:s retain only the sign of the signals and discard the amplitude
information. Consequently, developing customized one-bit DOA
estimation methods is necessary. In this work, we propose a
learning-based one-bit DOA estimator referred to as compressed
sensing adaptive boosting (CS-AdaBoost). The proposed method
employs a two-stage weak classifier within AdaBoost framework.
It first discretizes the DOA angular interval and builds an over-
complete dictionary for the array steering matrix and then
estimates the corresponding source signal matrix in an iterative
manner. In each AdaBoost iteration, an approximate weighted
least />-norm estimation is used as the first stage, followed by hard-
thresholding for imposing sparsity at the second stage. Numerical
simulations demonstrate the superiority of the CS-AdaBoost
method over other existing methods, especially in the face of
closely spaced and correlated sources.

Index Terms—One-bit ADC, DOA estimation, AdaBoost, least
norm estimation, compressed sensing

I. INTRODUCTION

One-bit direction-of-arrival (DOA) estimation has gained
considerable attention in the context of array signal processing
due to substantial reduction in power consumption and manu-
facturing costs. The use of one-bit analog-to-digital converters
(ADCs) provides substantial savings especially in systems using
large-scale arrays [1], [2]. In [4], the authors applied the arcsine
law to reconstruct the covariance matrix, which allowed the
use of conventional beamforming technique for one-bit DOA
estimation. The authors of [8] proposed the one-bit multiple
signal classification (MUSIC) DOA estimator, which first uses
the arcsine law to restore the array covariance matrix and
then identifies the noise subspace. The DOAs are estimated by
selecting the highest peaks in the well-known MUSIC pseudo-
spectrum. In [9], MUSIC was also applied to reconstructed
array measurement matrix. A maximum-likelihood (ML) one-
bit DOA estimation algorithm was developed in [10].

Imposing signal sparsity has been considered in many
approaches, such as joint sparse representation [11], deep fixed-
point continuation (DeepFPC) [12], and complex-valued binary
iterative hard threshold (CBIHT) [13], [14]. One-bit extension
of the generalized sparse Bayesian learning (Gr-SBL) approach
[16] was developed in [15]. Moreover, a one-bit compressed
sensing (CS) method named robust one-bit CS (ROCS) was
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proposed in [17] and applied to the one-bit DOA estimation
problem. One-bit DOA estimation for sparse linear arrays
(SLAs) has been explored in numerous works such as [3], [6],
[18]-[20].

Gridless one-bit DOA estimators have been developed
in the literature to overcome the challenges such as grid
mismatch and difficulty in resolving closely spaced sources that
some of the grid-based methods face. For example, gridless
compressed sensing [21], atomic norm denoising (AND) [22],
and accelerated proximal gradient (APG) [23] are gridless
methods that rely on promoting the Toeplitz structure of the
array covariance matrix in one-bit DOA estimation. The authors
in [24] proposed an off-grid iterative reweighted approach
(OGIR) which jointly estimates DOAs as well as row sparse
source signal matrix. The OGIR method iteratively solves a
maximum a posteriori (MAP) optimization problem using the
block successive upper-bound minimization (BSUM) [25].

Formulating one-bit parameter estimation as the problem
of finding the separating hyperplane in a binary classification
problem has been promoted in several works [26], [29]. In this
context, a support vector machine (SVM)-based one-bit DOA
estimation technique was introduced in [26]. This iterative
method is initialized by the discrete Fourier transform (DFT)
matrix as the grid-based dictionary. Each iteration consists of
two steps: first, estimating source signals using SVM, followed
by refining the DOA estimates in a gridless manner.

Despite significant research efforts, accurate one-bit DOA
estimation in cases with closely spaced and/or highly correlated
sources remains a challenge. Therefore, developing more
reliable one-bit DOA estimators is crucial.

In this paper, we propose a CS-based one-bit DOA esti-
mator, where the over-complete array steering matrix is first
constructed. A two-stage weak classifier with the capability
of enforcing sparsity is then utilized within adaptive boosting
(AdaBoost) framework [27], [28]. In the first stage of each
iteration, an approximate weighted least ¢5-norm estimation of
the separating hyperplane is employed to estimate the source
signal matrix, while a hard-thresholding operator is applied to
the estimated source signal matrix to impose sparsity in the
second stage of each iteration. After a predefined number of
AdaBoost iterations, the DOAs are determined as grid angles
corresponding to the largest peaks of the spatial spectrum
obtained by computing the ¢5-norm of each row of the final
source signal matrix.
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Notation: Matrices and vectors are represented by bold
uppercase and lowercase letters, respectively, while scalars
are represented by lowercase letters. The n x n identity matrix
is represented by I,,. The operator vec{-} stacks the columns
of a matrix into a column vector, while the operator unvec{-}
generates a matrix with the corresponding dimension from
the entries of the bracketed vector. The operators ${-} and
${-} return respectively the real and imaginary parts of the
bracketed argument. The function 1{-} is the indicator function.
The Hadamard and Kronecker products are denoted by ® and
®, respectively.

II. SYSTEM MODEL AND PRELIMINARIES
A. System Model for One-Bit DOA Estimation

Let a uniform linear array (ULA) with M antenna elements
receive narrow-band far-field signals from K sources with
directions of @ = [61,0s,...,0k]T. Each antenna element
deploys two one-bit ADCs for converting the real and imaginary
parts of received signals. The received signals over N time
instants are then expressed as

Y=0(A ey

where O(-) = sign(®{-}) + Jsign(3{-}) represents
the element-wise one-bit  quantizer, A(6) =
[a(01),a(fs),...,a(0k)] € CM*K and a(fy) =
[17 e—j27'rdsin(<9k)/)\7 o ,e—jQW(M—l)dsin(Gk)/)\]T c CM gre the
steering matrix of 0 and steering vector of 6y, respectively.
In addition, d = A\/2 is the inter-element spacing, \ is the
received signals’ carrier wavelength, and S € CEXV s the
incident source signals. Noise Z = [z, z2, . . .,zx] € CMXN
is assumed to be complex Gaussian obeying CA/ (0, c2I,y).
The goal is to estimate K DOAs 61, ...,0k using Y.

(0)S+1Z)

B. AdaBoost Framework

In binary supervised learning, a training set D is formed by
m training examples {x; € R"},;=1 ., and m binary class
labels y; € {1, —1};=1,. m- When the training set D is linearly
separable, the hyperplane defined by f(z) = hTx+b =0
splits the data space into two disjoint regions. Here, h and
b are the weight vector and bias, respectively. The relation
of x; and y; for j = 1,...,m can be expressed as y; =
g(x;) = sign(h”x; + b), where g(x;) serves as the binary
classifier. The similarity between the definition of g(x) and the
real-valued transformation of (1) can be used for estimating S
via binary classification approaches.

AdaBoost is an effective classification method that works
in an iterative manner by combining multiple weak classifiers
using a forward stage-wise additive modeling to create a strong
classifier [27], [28]. Here, a weak classifier refers to a classifier
that performs slightly better than random guessing. At the
beginning, AdaBoost assigns identical weights to all training
examples and trains the first weak classifier. After each iteration,
it increases the weights of the misclassified examples, ensuring
that the next weak classifier is trained on the updated weighted
training examples. In the r-th iteration, the r-th hyperplane
weight vector (i.e., the r-th weak classifier) h(") is trained using

the training examFles and the AdaBoost weight vector 3(") =
[ Y), ér), . m’|* . Then, the welghted classification error

is computed as e(’“) =2 Bj 1{s1gn (h™)Tx;) # y;}.
The weight of the r-th weak classifier in producing the
L
Next, the AdaBoost weights corresponding to misclassified
training examples are increased for the next iteration as
B+l = ﬁ( )exp(a(”l{slgn (( "NTx ) # y;}), and they
are normahzed to sum up to 1. After a predefined number
of iterations R, the final hyperplane weight vector (strong
classifier) is constructed as h = Zle aMh(™),

Exploiting the similarity between the one-bit parameter
estimation and binary classification problem, we propose an
AdaBoost-based DOA estimators in the sequel.

ey

final strong classifier is defined as o) = %ln

III. CS-ADABOOST
We begin with constructing an over-complete dictionary
A(9) = [a(0,),a(by),...,a(0,)] € CM*? by discretizing
the DOA range [—%, %] into @ (Q > K) equidistant angular

272
grid points 8 = [04,0,, . .. ,QQ]T. Then, we can recast (1) as

where 8 € CO*Y is the extended source signal matrix. The
extended source signal S € CP*V defined in (2) can be
viewed as a row sparse matrix. This property of S is taken
into account in designing the proper weak classifiers within a
CS AdaBoost-based one-bit DOA estimator. Particularly, we
use the hard-thresholding operator in the second stage of weak
classifiers to ensure the estimated S in each iteration is a
K row sparse matrix. Towards this end, after applying the
vectorization operator on (2), we obtain

y=vec{Y} = Q((IN ®A(0))s + Z>
= Q(¥(9)s + z) ©)
where s = vec{S} € C¥N, z = vec{Z} € CMN and ¥(9) =

(In®A(0)) € CMNXQN Converting (3) into the real domain,
we have
yr = sign (¥gsg + zr) (4a)
where
YR = [%{Y}T» S{Y}T]T = [yr,1,¥R.25 - - - Z/R,2MN]T
€ {£1}2MY (4b)
T & [% {T@O) -9 {\Il(e)}]
O [S{z(@))r R{E@O)}
T
= [QRJ,QR,Q, . ,QR,QMN] € RZPMNX2QN  (4¢)
sp = [R{s}”, 9{s)"]" (4d)
zn = [R{z}7,5{z}7]" (4e)

For ease of presentation, the dependency of ¥y on @ is
dropped in (4). Estimating sy in (4) can be viewed as
a binary classification problem, where {gR,j} and {yr;}
for j = 1,...,2M N are the training examples and binary
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class labels, respectively, and sy is the weight vector of the
separating hyperplane. We propose a CS AdaBoost-based
method to estimate si in (4). A two-stage weak classifier
is used in each iteration of the CS-AdaBoost method. The
procedure is described in Algorithm 1. In the first stage of the
r-th iteration, we solve the following weighted underdetermined

system of linear equations:
R=W{ ®esi! (52)

where

WO g {[ LS B ]}
S | VRN PN N

57 exp (a1 fsign (57w, ) # s })

(5b)

g = -
> B
=
for j=1,...,2MN (5¢)
1 1—er=b
(r—=1) & -
« & 2ln< D ) (5d)
2MN
e r—1 r—1,2
el Ny 5 )1{s1gn (( LT 1/JRJ-) # yR,j}
j=1
(5¢)

where the roles of 3;’s, a’s, and €’s are elaborated in Section II.
In (5), the classification error of the (r — 1)-th weak classifier
is taken into account through the exponential relation of ﬁ]@’s

in (5¢) for designing the weight matrix Wl({ ) and obtaining the
r-th weak classifier. Among infinite number of solutions for the
underdetermined system of linear equations in (5), we select
the least ¢3-norm solution obtained by solving the following
optimization problem:

. (r,1) H 6
iy (=7, ©
subject to yr = wl )\Ifng 1) (6b)

The solution of (6) is given as
7,1 r r T Ty-1
s = (W) (W (W) v

1 -1
— wf(wpwf) (W) yw. )

-1
Since calculating (gRgﬁ) is computationally expensive,
weak classifiers can be approximate estimators, and scaling
weak classifiers by a positive number does not affect the final

result due to the one-bit quantization, we approximate (7) by
-1
setting (QRQ£> =IpynN as

sy ~ ok (Wg)) yr =¥k (Q(” ® YR> (8a)
where
T
a [\/7 \/E,...,\/ﬁg@m} (8b)

We use §g 1) to construct the complex-valued s(™1) based on

(4d), and then form 8" = unvec{s("1} € CO*N,

Algorithm 1 CS-AdaBoost

Input: Y, M, N, K, @, and R.
Output: 6.

1: Discretize [—7, 7] into Q equidistant grid points 8 =

[QMQ% ce aQQ]T'
2: Form A(9).

3: Form ¥(0) = (Iy ® A(0)), and ¥y =
T
[QR,VQR’Q; L. ’QR,2MN] as in (4c).
4:Form y = vec{Y}, and yr = [Yr,1,¥R,2; - - - ayR,2J\4N]T
as in (4b).
5. Initialize the AdaBoost weights 53(1) — 1/2MN for j —
+2MN.

for r=1to R do
6.1: Form @(T) as in (8b).
6.2: Compute §g’1) = ol (@(T) ® yR).
6.3: Construct the complex-valued s(™1) based on (44d),
and form SV = unvec{s~1}.
6.4: Use (9) to obtain S("?).
6.5: Construct s(™?) = vec{g(T’Q)} and §g’2) =
[%{§(r,2)}T7 %{§(r,2)}T]T'
6.6: Compute error
() — Z2MN ﬁ(r)l{blgn ((ﬁgm)TﬁR,j) + yRJ}.
6.7: Compute o") = %ln (lz(i()r)).
6.8: Update
gt = g exp (a1 {sign (8777, ) #

).

vj.

6.9: Compute c("*1) = Z2MN ﬁ(rﬂ) and normalize
(r+1)

weights as ﬂ(rﬂ) = %, V3.

end for

7: Compute sp = Zf’:l 04“@5{’2).

8: Construct the complex-valued s based on (4d), and form
S = unvec{s}.

9: Obtain f.; € R? by computing ¢5-norm of each row of
S.

10: Pick the K DOAs in 8 which correspond to the K
largest peaks of f s as 6.

To enforce the K-row sparsity characteristic, the second
stage of the r-th iteration is designed as

() = Hardyc (8) ©)

where Hardg () first computes the ¢s-norm of each row of
the bracketed matrix to produce a vector, and then it preserves
K rows of the bracketed matrix which correspond to the K
largest peaks of the vector and sets the other entries to 0.
The final part of the r-th weak classifier employed in the
CS-AdaBoost method is to construct s("2) = vec{§(r’2)} and
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st = [R{s2}T, %{§("2)}T]T. The strong classifier after
R iterations is computed as sp = Zle a(”)ggg). We form s
via (4d) and also obtain S = unvec{s}. We compute ¢3-norm
of each row of S to obtain f.. € RY. We then select the K
DOAs in 8 which correspond to the K largest peaks of f.s.

It is worth mentioning that the computational complexity
order for Algorithm 1 is (’)[RMN (1+NQ) ]

IV. SIMULATION RESULTS

This section presents numerical simulation examples to
evaluate the performance of the proposed CS-AdaBoost one-
bit DOA estimator and compare it to the state-of-the-art
algorithms, including the one-bit MUSIC and root-MUSIC
[8], CBIHT [13], Gr-SBL [15], and OGIR [24] methods.
Furthermore, high-precision (HP) root- MUSIC [30] (i.e.,
when high-precision ADCs are used) and HP CRB [31] are
considered as benchmarks. The numbers of iterations and
angular grid points for the proposed CS-AdaBoost method
are set to R = 20 and ) = 360, respectively. The numbers of
sources, snapshots, and antennas are represented by K, N, and
M, respectively. The mean squared error (MSE) is defined as'

K

1 R
MSE = 10log;q—— Z (Or,i — Ok)*

PK
i=1 k=1

where 6y, ; is the k-th DOA estimated in the i-th trial. The
number of trials used to compute the MSE is P = 1000
throughout this section.

In Fig. 1, we evaluate the performance of the methods
tested for the setup of four uncorrelated sources with 8 =
[-32°,—12°,5°,37°], M = 40, and N = 10. In Fig. 1, OGIR
has the best performance and one-bit root-MUSIC has the worst.
All other one-bit DOA estimators perform almost similarly.
The performance of the proposed CS-AdaBoost one-bit DOA
estimator can be improved if @) is increased.

In Fig. 2, a challenging setup is considered, where 6 =
[-32°,-30°,5°,37°], M = 40, and N = 40. For the
first two directions, the correlation coefficient is p = 0.95.
Fig. 2 demonstrates that the performance of the proposed CS-
AdaBoost one-bit DOA estimator is considerably better than
those of other one-bit DOA estimators tested. Furthermore, the
proposed CS-AdaBoost method beats the HP root-MUSIC
method at low SNRs in this scenario. This comes from
the nonlinearity imposed by the one-bit quantizers, which
undermines the noise effect at low SNR regimes to some
extend.

Fig. 3 shows the performance of the methods tested
when the number of snapshots varies for the setup 8 =
[-32°,-30°,5°,37°], p = 0.95, M = 40, and SNR = 5
dB. It can be seen that the proposed CS-AdaBoost one-bit
DOA estimator has the best performance among all one-bit
DOA estimators tested.

IThe unit of directions is radian here.

T T T T
- =% - One-bit MUSIC ——£— One-bit root-MUSIC
—— OGIR —&— (CS-AdaBoost

- -G - CBIHT —A— HP root-MUSIC b
Gr-SBL CRB

MSE (dB)

SNR (dB)

Fig. 1: MSE vs. SNR for K = 4 uncorrelated sources with
0 = [—32°, —12°,5°,37°], M = 40, and N = 10.

MSE (dB)

- =% - One-bit MUSIC —=— One-bit root-MUSIC

-80 | —— OGIR —&— (CS-AdaBoost

- -G - CBIHT —4A— HP root-MUSIC
Gr-SBL CRB

-90 I

-10 -5 0 5 10 15 20

SNR (dB)

Fig. 2: MSE vs. SNR for K = 4 partly correlated sources with
6 = [—32°,-30°,5°,37°], p = 0.95, M = 40, and N = 40.
The proposed CS-AdaBoost method significantly outperforms
other one-bit DOA estimators in this scenario.

V. CONCLUSION

In this paper, we have developed an one-bit DOA estimators,
named CS-AdaBoost, which employs two-stage weak classifiers
within iterations of an AdaBoost framework to build a strong
DOA estimator. It begins with building an over-complete
dictionary by discretizing the angular interval into equidistance
grid points. The source signal matrix is then estimated using
the AdaBoost framework where in each iteration, a weighted
least norm estimation is used as the first stage and a hard-
thresholding operator is applied for sparsity enforcing as the
second stage. Numerical results demonstrate the outstanding
superiority of the CS-AdaBoost one-bit DOA estimator, par-
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- =% - One-bit MUSIC —&— One-bit root-MUSIC
—— OGIR —&O— CS-AdaBoost
-80 |- -0 - CBIHT —A—HP root-MUSIC 1
Gr-SBL CRB
-90 | | | | . .
10 20 30 40 50 60 70 80

Number of snapshots

Fig. 3: MSE vs. the number of snapshots for K = 4 partly
correlated sources with 8 = [—32°,—30°,5°,37°], p = 0.95,
M = 40, and SNR = 5 dB. The proposed CS-AdaBoost
method significantly outperforms other one-bit DOA estimators
in this scenario.

ticularly in resolving closely spaced and correlated sources,
compared to state-of-the-art methods.
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