Probabilistic Position-Aided Beam Selection for
mmWave MIMO Systems

Joseph K. Chegel, Arie Yeredor?®, and Martin Haardt*
!Communications Research Laboratory, Ilmenau University of Technology, Ilmenau, Germany
2School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
Email: {joseph.chege, martin.haardt} @tu-ilmenau.de, ariey @tauex.tau.ac.il

Abstract—Millimeter-wave (mmWave) MIMO systems rely on
highly directional beamforming to overcome severe path loss
and ensure robust communication links. However, selecting the
optimal beam pair efficiently remains a challenge due to the
large search space and the overhead of conventional methods.
This paper proposes a probabilistic position-aided beam selection
approach that exploits the statistical dependence between user
equipment (UE) positions and optimal beam indices. We model
the underlying joint probability mass function (PMF) of the
positions and the beam indices as a low-rank tensor and estimate
its parameters from training data using Bayesian inference. The
estimated model is then used to predict the best (or a list of
the top) beam pair indices for new UE positions. The proposed
method is evaluated using data generated from a state-of-the-
art ray tracing simulator and compared with neural network-
based and fingerprinting approaches. The results show that our
approach achieves a high data rate with relatively few training
samples and a significantly reduced beam search space. These
advantages render it a promising solution for practical mmWave
MIMO deployments, reducing the beam search overhead while
maintaining a reliable connectivity.

Index Terms—Beam selection, millimeter-wave (mmWave),
position-aided, tensors, Bayesian inference, interpretable machine
learning (ML).

I. INTRODUCTION

Millimeter-wave (mmWave) communications are a key en-
abler of next-generation wireless networks, offering high data
rates and improved spectral efficiency. However, mmWave
signals suffer from high path loss and sensitivity to blockages,
necessitating the use of highly directional beamforming to
establish reliable communication links [1], [2]. In multiple-
input multiple-output (MIMO) systems, selecting the optimal
beam pair between the base station (BS) and the user equip-
ment (UE) is critical for maximizing the signal strength and
the system performance. For initial beam establishment at the
UE, traditional methods include exhaustive and hierarchical
beam search. Exhaustive beam search, where the UE measures
the quality of all BS beams by sweeping all of its receive
beams, suffers from a high overhead and latency, whereas
hierarchical beam search [3] reduces the overhead incurred
by an exhaustive search, but experiences a degradation in
beamforming gain due to its multilevel search [4].

Due to the directional nature of narrow beams and the
dependency on line-of-sight (LOS) propagation, knowledge

The authors gratefully acknowledge the support of the German Research

Foundation (DFG) under the PROMETHEUS project (reference no. HA
2239/16-1, project no. 462458843).

ISBN: 978-9-46-459362-4

2107

of UE positions may be exploited to reduce the training
overhead in mmWave communications [5]. For example, an
inverse fingerprinting method that uses past received power
characteristics at UE locations has been shown to reduce beam
training overhead in vehicular communications [6]. Machine
learning (ML) approaches based on neural networks (NNs)
have also been used in this context to learn the complex
mapping between UE positions and optimal beam indices [7].
Additional context information such as UE antenna array
orientation [8], vehicle size [9], and traffic density [10] has
been exploited in ML-based beam selection approaches.

In this paper, we propose a novel and efficient position-
aided beam selection method that relies on the statistical
relationship between UE positions and optimal beam indices,
considering them as random variables drawn from an under-
lying joint probability mass function (PMF). We model the
joint PMF as a low-rank tensor via the canonical polyadic
decomposition (CPD), which has been shown to admit a naive
Bayes interpretation in the context of PMF tensor estimation
[11]. This significantly reduces the number of parameters,
enabling a reliable estimate to be obtained using relatively
few training samples. In addition, the parameters of our
model consist of probability distributions and are therefore
interpretable, in contrast with NN weights and biases. We
evaluate the proposed method using realistic data generated
from Sionna [12], a state-of-the-art ray tracing simulator.
Numerical results demonstrate that our approach significantly
reduces the search space while maintaining a higher data rate.

II. SYSTEM MODEL

We consider a mmWave MIMO communication system
that operates on the downlink. The communication scenario
consists of a fixed BS and a mobile UE, each equipped
with a uniform planar array (UPA). The UPAs are placed
on the x-y plane and consist of elements {Mr,, Mt } for
the BS and {Mg,, Mg, } for the UE. The total number of
antenna elements at the BS and UE is Mt = My, Mr, and
Mg = Mg, Mg, respectively. The received signal at the UE
is given by

yr =/ Prw"H fs + w'n, (1)

where ()" denotes the conjugate transpose, f € CMT and
w € CM® denote the precoding and combining vectors at the
BS and the UE, respectively. Furthermore, Pr is the transmit
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power, H € CMrxMr jg the matrix of channel coefficients,
s € C is a pilot symbol with unit power, and n € CMr
denotes a zero-mean circularly symmetric complex Gaussian
noise vector with variance o2.

A. Channel Model

We generate the channel coefficients H using Sionna [12],
an open-source software for simulating the physical layer of
wireless and optical communication systems. In particular,
we employ the Sionna ray tracing (RT) module to simulate
physically accurate channel realizations for various UE posi-
tions within a given propagation environment. Fig. 1 shows the
simulation environment (also referred to as the “scene”), which
is the area around the Frauenkirche in Munich, Germany. The
scene contains objects made up of different materials such as
concrete, brick, wood, glass, metal, among others, resulting
in a rich and complex propagation environment. The ray
tracing tool simulates a number of rays, each corresponding
to the various propagation paths between the BS and each UE
position. Each path contains associated information such as the
angle of departure (AoD), angle of arrival (AoA), the complex
path gain, and the delay. The channel matrix is constructed by
applying a narrowband geometric channel model, i.e.,

L
H= Z avar (Or,c, dr.0)alt (01,0, 1.0), 2)
(=1
where L denotes the number of paths, o, the complex path
gain, Or ¢ and f1, the elevation AoA and AoD, and ¢gr,
and ¢t ¢ the azimuth AoA and AoD for the /-th path. We
consider L = 25 dominant paths consisting of one line-of-
sight and L — 1 non-line-of-sight paths arising from reflec-
tion and diffraction. In addition, ar(-) and ar(-) are the
receive and transmit array steering vectors, respectively. Let
us define the spatial frequencies in the x- and y-directions
as ,u,(f) = kAysin(6;) cos(¢;) and uy) = kA, sin(6;) sin(¢;),
where i € {R, T}, k = 27 /v is the wave number, v the carrier
wavelength, whereas A, and A, denote the spacing between
the antenna elements in the x- and y-directions, respectively.
The steering vector a;(f;, ¢;) € CM=My is defined as

a;(0i,¢:) = T]My (aff) ®a§,l)> ,
; A qT .
where a,(f) = {1 ejﬂi” ej(Mx_]-)/J/;(:):| , a§,’) —
- AT
1 em? . dMy=Dui” | and @ denotes the Kro-

necker product. Here, M, and M, are the number of antenna
elements along the x- and y-axis. In this paper, we set
Ay =A, =v/2.

B. Beamforming Codebooks

We consider analog beamforming with one RF chain at the
BS and the UE. For simplicity, we employ discrete Fourier
transform (DFT) codebooks for precoding and combining. Let
Iy and I, be the number of precoding and combining beams,
while 6 and ¢ are the quantized elevation and azimuth angles,
obtained by quantizing the spatial frequencies in the x- and

Fig. 1: Illustration of the ray tracing simulation environment overlaid
with a color map showing the coverage of the base station (blue dot).
The BS antenna array is placed at a height of 30 m above the terrain
surface. The environment depicts the area around the Frauenkirche
in Munich, Germany, and is set up using Sionna [12].

y-directions such that 2mmy /My, < pyx < 2m(myx + My —
1)/My, my € [0, My — 1] and 27my, /M, < py < 2m(my +
M, —1)/My, my € [0, My — 1], respectively. Note that my
and m,y are integers. Quantizing the spatial frequencies in this
way allows the codebooks for the UPAs to be constructed
from a 2D DFT matrix. Thus, the precoding and combining
codebooks are given by

CT - {aT(e_(Tl)v _’(I‘l))a <. waT(a_’(TIf)aq_s’(TIf))}

CR = {aR(o_lg)7 _g))7 cee 7aR(§1({IW)a &gW))}a

respectively. Let iy € F = {1,...,Is} and i, € W =
{1,...,I}. Given the precoding beam f;, € Cr and the
combining beam w, € Cg, the received signal strength (RSS)
for the beam pair indexed by (if, iy ) is

2
RSS;; i, = ‘\/PTw;"WHfifs + 'wz"wn‘ . 4)
In this paper, we set It = My and I, = Mg.

3

C. Dataset Construction

This paper focuses on an offline learning setting where there
is a data collection phase and a training phase. To construct
the dataset, UE positions are randomly sampled within the
simulation environment. The ray tracing tool simulates multi-
path propagation to each position and generates the associated
MIMO channels. After generating the channel samples, an
exhaustive search is performed to identify the beam pair
(fiz, wix ) that maximizes the RSS at each UE position. The
optimal beam pair indices (if,4},) are thus given by

(if,1},) = arg max RSS; ;.. )

i €EF iwEW

The dataset therefore consists of 7' samples, each containing
the position (z,y,z) of the UE and the optimal beam pair
indices (if,4},). In practice, UE positions are obtained using
Global Positioning System (GPS) sensors which are available
in modern user devices. The positions can be shared with the
BS using, for example, sub-6 GHz control channels.
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ITI. PROPOSED BEAM SELECTION METHOD

The objective of beam selection in the scenario considered
in this paper is to assign the optimal beam pair (or a set of
beam pair options) to a UE, given its position. This may
be viewed as a classification problem in which the input
features are the UE positions and the output targets (or labels)
are the optimal beam pair indices. ML classifiers based on
neural networks attempt to approximate the (possibly highly
non-linear) function that maps the features to the labels. In
this paper, we propose to view the UE positions and the
beam indices as realizations drawn from an unknown joint
probability distribution. In contrast to non-linear function
approximation, we attempt to estimate the underlying joint
PMF of the UE positions and the beam indices from the
available data samples, after which the estimated PMF can
be used for beam selection at new UE positions. We refer
to our proposed method as Probabilistic Position-Aided Beam
Selection (ProPABS).

A. Low-Rank Modeling of the Joint PMF

Define X = { Xy, Xy, X, X\ } consisting of N = 4 random
variables associated with the x-coordinate and y-coordinate
of the UE, the precoding beam index, and the combining
beam index, respectively. Note that in our simulations, the
z-coordinate of the UE (i.e., its height from the ground)
is constant for all UE positions and can thus be omitted
from the collection of random variables. Let the support of
the variables X, and X, be uniformly discretized such that
Xx € [1,L] and X, € [1,I,]. Furthermore, for ease of
notation, define V' = {x,y,f, w} as a collection of subscripts.
Then, given that Xt € [1, It] and X, € [1, I], the joint PMF
of X can be conveniently represented by a four-way tensor
X € RExIyxIixlw - where each element of X is the joint
probability of a given realization of the four random variables.
In particular, letting 7, = 1,..., I, for n € N, we have that
X (ix, by, if, tw) = Pr(Xx = ix, Xy = 1y, X¢ = i, Xow = tw).

One may choose to estimate X using a histogram. In this
case, the number of free parameters is (] [,,c o In)—1, which is
at least exponential in N (assuming I,, > 1, Vn). Therefore,
to reduce the parameter space, we impose a low-rank CPD
model (see, e.g., [13]) on X. This decomposition represents
X in terms of a sum of rank-one tensors, i.e.,

R
X = Z ArAx(:,1) 0 Ay,
=1

where o denotes the outer product, R is the smallest number of
rank-one components for which such a decomposition exists,
XA = [M,...,Ag|" is a loading vector whose elements \,.
scale each rank-one component, while A, (:,r) is the r-th
column of the n-th factor matrix A,, € RI»*1,

Kargas ef al. have shown in [11] that such a decomposi-
tion of a PMF tensor can be interpreted as a naive Bayes
model with one latent variable H which takes R states.
Under this interpretation, A, = Pr(H = r), i.e, the prior
probability that the latent variable takes the r-th state, while
A, (:,r) = p(X,, | H = r), i.e., the conditional PMF of the

r)o A¢(:,r) 0 Aw(:,7), (6)

n-th variable, given that H = r. Thus, the decomposition
in (6) is subject to nonnegativity (A > 0,4, > 0,Vn)
and sum-to-one (1A = 1,1TA, = 1T, Vn) constraints
(also referred to as probability simplex constraints). The
total number of free parameters in the CPD representation
is (R—1)+ > ,cn R(I, — 1), which is linear in N rather
than exponential, as is the case with histogram estimation.
A distinctive feature of such a nonnegative CPD is that it is
essentially unique up to a permutation ambiguity among the
rank-one components (see, e.g., [13]).

B. Estimating the Joint PMF

In this subsection, we describe how to estimate the model
parameters {\, Ay, A, A, A, } from training data using
Bayesian inference [14]. Define the dataset consisting of
T iid. samples of the UE positions (z,y) and the opti-
mal beam indices (if,? jv) as D = {d;}_,, where d; =
[xt,yt,i;t,i;t]T and (-)7 denotes the transpose operator.
Under the naive Bayes interpretation, each sample d; is
associated with a realization of the latent variable H € [1, R].
We define a local latent variable z; = [214,...,2r,]" such
that z,; = 1 if H = r and z,; = 0 otherwise. It follows that
Pr(zpp =1)=Pr(H =1) = A

From the definition of z;, we can write p(z;|A) =
Hf‘:l A", The likelihood of D given the parameters ® =
{Z, X\ AL Ay A, Ay} s

p(D‘@) = p(D|Z’AXaAyaAf7AW)'
where Z = {z}L 1, p(Z |\) =

(D|Z Ax, Ay, Ap, Ay) =

TTIT (Ax(en 14

y (e PV A7) A (il 7))
t=1r=1

To ensure that the probability simplex constraints are satisfied,
we assign Dirichlet prior distributions (see, e.g., [15]) for A
and A, (:,7),Yn,r, ie.,

p(Z|N), )
[T,_; p(=¢| A) and

R In A riig
A o JTA, p(Antn) o I (AnGinr)) ™7
r=1 In=
where a ;- and «, ,;, are the hyperparameters of the priors.
The posterior distribution of the model parameters given
the data is usually found using Bayes’ theorem, p(® | D) =
p(D,®)/ J (D, ©), where

p(D,®) =p(D|O)- HHp(
neN r=1
However, in our case, exact Bayesian inference is infeasi-
ble due to the high-dimensional integral in the denominator
of Bayes’ theorem. Therefore, in this work, we adopt the
variational Bayes for PMF estimation (VB-PMF) algorithm
proposed in [14] to approximate p(® |D). VB-PMF em-
ploys co-ordinate ascent variational inference [15], which is
guaranteed to converge to a local optimum. Point estimates
{\ A, Ay7 A;, A} are obtained by computing conditional
expectations with respect to the estimated posteriors for each
parameter.

2). ®
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An important advantage of the VB-PMF algorithm is that
the rank R of X, which is usually unknown in practical
scenarios, is estimated as part of the inference procedure. In
particular, thanks to the sparsity-promoting property of the
Dirichlet distribution, setting vy, < 1,Vr ensures that the
estimated posterior distribution for A (i.e., the PMF of H)
is sparse [15]. We choose ay, = 1076, ¥r. On the other
hand, we set ayr;, = 1,Yn,ri, to allow the columns
A, (:,r) (ie., the conditional PMFs) to explore the space of
all possible distributions. The algorithm is initialized with a
rank greater than the unknown true rank (e.g., the maximum
possible rank required for CPD uniqueness [13]), whereas the
hyperparameters of the posterior distributions are initialized
randomly. Since the joint PMF tensor is low-rank, some
elements of A will be close to zero after convergence. The
corresponding rank-one components can then be removed,
resulting in automatic rank detection. Due to space limitations,
we refer the interested reader to [14] for more details.

C. PMF-Based Beam Selection

Given a test UE position (Ztest, Ytest), We would like to
predict the optimal precoding and combining beam indices
(1f,1%). The parameters {A A, A, A; A} represent an
estimate of the joint PMF of all UE positions, precoding beam
indices, and combining beam indices. With the joint PMF
at hand, we can obtain (i’f,%;‘v) by maximizing the posterior
distributions of the beam indices given the test position. For
a classification problem, such an estimate, referred to as
the maximum a posteriori (MAP) estimate, minimizes the
probability of misclassification [15]. Thus, we have

(’AL; E:v) = arg max Pr(ifa bw | Ltest ytest) (9a)
it EF iwEW
R
= arg max Z Pr = T)Pr(xtesty Ytests bt by | T)a (9b)

it EF iwEW r=1

where (9b) is obtained after applying Bayes’ rule and not-
ing that the maximization is independent of the marginal
probability Pr(ztest, Ytest ). Recall that under the naive Bayes
model, the variables { X, X, X¢, X, } are independent when
conditioned on the latent variable H. Thus, the objective
in (9b) is expressed in terms of the estimated parameters as

Z A Af Zf; (ZW7 )Ax(xtestv T)Ay (ytes‘m T)~ (10)
The estlmated posterior distribution p(X s, Xy | Ziest, Ysest) 18
used to produce a top-N, beam pair list by selecting the
indices corresponding to the [V}, largest posterior probabilities.

IV. RESULTS AND DISCUSSION

We consider the simulated outdoor environment depicted
in Fig. 1. The transmit power Pr, the carrier frequency f,,
and the carrier bandwidth B are set to 30dBm, 26 GHz, and
10 MHz, respectively. Furthermore, we assume that the noise
variance is given by 02 = —174 + 10log;, B dBm. The
BS and the UE are equipped with 8 x 8 and 2 x 2 UPAs,
respectively. Thus, the number of antennas is Mt = 64 and

Mgy = 4. The positions of the UEs are randomly sampled
within the BS coverage area and realistic channel responses
between the BS and each position are generated using the
Sionna ray tracing module [12]. For each UE position, the
RSS is calculated using all precoder-combiner combinations
according to (4). The optimal beam pair indices are then
obtained using (5).

The dataset D consists of 2 x 10% samples, of which 80 %
are used for training and 20 % for testing. Moreover, 50
experiments are conducted, each involving the shuffling of the
entire dataset and its division into training and testing sets,
with the final result being the average across all experiments.
For ProPABS, the x- and y-coordinates are discretized into
bins of size 5m, yielding I, = 280 and I, = 179, respectively.
Therefore, our model contains 15,719 tralnable parameters
(cf. Section III-A). We initialize the VB-PMF algorithm with
R = 30 components. The estimated ranks obtained from 50
experiments, along with their frequency of occurrence, are
R=3(4%), R =4 (34%), R = 5 (50%), and R = 6 (12%).
Then, we compare ProPABS with two position-aided beam
selection approaches:

1) Inverse multipath fingerprinting [6] builds a database
of top beam pair indices for each UE position through
exhaustive search. Beam pairs are ranked by their like-
lihood of being optimal (i.e., highest RSS) and used
during testing. A 5 m bin size is used to discretize UE
positions, as in our method.

2) A fully connected neural network (NN) maps UE posi-
tions to optimal beam pairs (e.g, [7]). It has three hidden
layers with 18, 36, and 50 neurons using sigmoid acti-
vations, a 2-neuron input layer, and a 256-neuron output
layer, totaling 15,644 trainable parameters—comparable
to ProPABS. The NN is trained for 50 epochs using the
Adam optimizer [16].

Each beam selection method produces a candidate list S of
the top-NV, beam pairs and the pair resulting in the highest
RSS is selected, i.e.

(if,4%) = arg max RSS;
(it,iw)ES
To evaluate the performance of the beam selection methods,
we consider the power loss probability metric defined in [6].
Let the set of all possible beam pairs be B. Then, the power
loss probability is given by [6]
Pa(c,S) = Pr[ max RSS;, ;. > c-RSS;. }

(ig,iw)EB

(1)

12)

where ¢ > 1. In our experiments, we evaluate the 0dB (c = 1)
and 3dB (c = 2) power loss probabilities. In addition, we
compute the achievable rate of the selected beam pair, defined

as
9] a3

Fig.2 presents the results arising from our numerical sim-
ulations. Fig.2a shows the average power loss probability as
a function of the number of beam pairs searched. ProPABS
consistently achieves a lower power loss probability compared

R, = log, {1 + (‘ PTw%'"l Hf%f*s 2
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Fig. 2: Performance evaluation of the proposed beam selection method compared to two baselines.

to the baseline approaches. The average training times for
ProPABS, the NN, and fingerprinting were 1.2s, 36.75s, and
0.23 s, respectively. Fig.2b presents the average achievable
rate and the corresponding average rate normalized by the
rate obtained with perfect beam alignment (i.e., using ex-
haustive search). We observe that ProPABS already achieves
about 90 % of the maximum achievable rate by searching
only the top N, = 6 beam pairs. Note that for the setup
considered, there are MtMpr = 256 possible beam pair
combinations, demonstrating that ProPABS greatly reduces
the search space while achieving a considerably high average
rate. In comparison, the NN and the fingerprinting method
need to search around Ny, = 13 and N, = 19 beam pairs,
respectively, to achieve a similar normalized average rate.
Fig.2c shows the average 0dB power loss probability as a
function of the number of training samples, ranging from
100 to 1600. For this evaluation, we set N, = 19 to ensure
a normalized average rate greater than 90 % for all beam
selection methods, and average over 100 trials. We observe
that ProPABS yields the best performance compared to the NN
and fingerprinting approaches across all training dataset sizes.
Therefore, ProPABS achieves an acceptable average rate with
relatively few training samples, demonstrating its efficiency.

V. CONCLUSION

This paper presents an efficient beam selection method for
mmWave MIMO systems that employs a low-rank probability
mass function (PMF) tensor model with interpretable param-
eters. By estimating the joint PMF tensor of discretized UE
positions and beam indices using a Bayesian approach, the
proposed method effectively captures the statistical relation-
ship between them, enabling a reduction in the beam search
space while maintaining a high achievable rate. Compared to
approaches based on neural networks and fingerprinting, our
method achieves a better performance in terms of the power
loss probability and the achievable rate with relatively few
training samples. The effectiveness of the proposed approach
is demonstrated using data generated from a state-of-the-art
ray tracing simulator, ensuring realistic evaluation conditions.
Since this paper only considers a single stream, an immediate
future step is to extend the proposed approach to multi-
streaming. Additionally, online beam selection could be con-

sidered to allow continuous adaptation to the communication
environment.
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