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Abstract—Reliable density estimation is fundamental for nu-
merous applications in statistics and machine learning. In many
practical scenarios, data are best modeled as mixtures of compo-
nent densities that capture complex and multimodal patterns.
However, conventional density estimators based on uniform
histograms often fail to capture local variations, especially when
the underlying distribution is highly nonuniform. Furthermore,
the inherent discontinuity of histograms poses challenges for tasks
requiring smooth derivatives, such as gradient-based optimiza-
tion, clustering, and nonparametric discriminant analysis. In this
work, we present a novel non-parametric approach for multivari-
ate probability density function (PDF) estimation that utilizes
minimum description length (MDL)-based binning with quantile
cuts. Our approach builds upon tensor factorization techniques,
leveraging the canonical polyadic decomposition (CPD) of a
joint probability tensor. We demonstrate the effectiveness of
our method on synthetic data and a challenging real dry bean
classification dataset.

Index Terms—Probability density function (PDF), minimum
description length (MDL), tensor factorization, quantile-based
binning, nonparametric density estimation.

I. INTRODUCTION

Accurate density estimation is crucial in many areas of
statistics and machine learning, including clustering, classi-
fication, and signal processing. In particular, mixture models,
where the overall distribution is expressed as a weighted sum
of component densities, play a key role in modeling complex,
multimodal data. Recovering both the component densities
and their corresponding weights is essential for revealing the
underlying distribution and making reliable inferences.

Although many natural processes are inherently continu-
ous, conventional methods, such as uniform histograms or
probability mass functions (PMFs), often fail to capture local
variations in the data. This is especially true in applications
involving complex and multimodal distributions. Examples
include biological measurements (e.g., gene expression levels
in cancer genomics, and multimodal intensity distributions
in medical imaging like the BrainWeb MRI dataset [1]) and
agricultural applications.

Recent advances in tensor-based density estimation have
attracted considerable attention in the statistical community
(e.g., Anandkumar et al. [2]; Miranda et al. [3]; Gottesman et
al. [4]). In all these works, the focus is on fully parametric
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models in which the mixture components are assumed to
belong to a specific parametric family. In contrast, our method
makes no parametric assumption about the underlying density.

Our approach is most similar to that of Kargas et al. [5],
who proposed a tensor–based method for learning mixtures.
In their work, the dataset is discretized using uniform bins,
followed by tensor factorization to recover the discretized
PDFs, and finally, sinc interpolation is used to reconstruct the
continuous PDF. However, uniform bins have been shown to
be effective only when the data are approximately uniformly
distributed [6]. In contrast, by employing minimum description
length (MDL)-based binning with quantile cuts, our method
overcomes these limitations.

Much of the existing literature within the MDL frame-
work has focused on the estimation of histogram density,
producing discrete PMF models (e.g., [7]). Although such
methods yield an accurate discrete representation, they do not
directly address PDF estimation. In this work, we extend the
classical MDL framework to continuous multivariate settings.
Moreover, while previous work [8] represents the joint PDF
using a low-rank tensor in the Fourier domain, our method
operates directly in the data domain.

II. PROBLEM FORMULATION

Consider a collection of N continuous random variables
X = {X1, . . . , XN}. Furthermore, given a realization x =
{x1, . . . , xN} of X, assume that the joint PDF fX(x) can be
written as a weighted sum of R 1 conditional PDFs fX |H , and
that each conditional PDF can be factorized into a product of
its marginal densities such that

fX(x1, . . . , xN ) =

R∑
r=1

pH(r)

N∏
n=1

fXn|H(xn | r). (1)

The expression in (1) represents fX(x) as a mixture of product
distributions, where H can be interpreted as a latent variable
taking R states, while pH(r) is the prior probability of
selecting the r-th product in the mixture (e.g., [5]).

However, note that no explicit parametric form (e.g., Gaus-
sian, etc.) is specified for the conditional PDFs.

The support of each Xn is discretized into In bins ∆in
n ,

in = 1, . . . , In, resulting in a discretized version of (1) which

1The choice of the tensor rank R will be discussed in Subsection IV-B.
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can be conveniently represented by an N -dimensional tensor
X ∈ RI1×···×IN where
X (i1, . . . , iN ) = Pr(X1 ∈ ∆i1

1 , . . . , XN ∈ ∆iN
N )

=

R∑
r=1

pH(r)

N∏
n=1

Pr(Xn ∈ ∆in
n |H = r). (2)

By defining An(in, r) = Pr(Xn ∈ ∆in
n |H = r) and λr =

pH(r), it can be observed that X admits a rank-R canonical
polyadic decomposition (CPD) [9], [10] with factor matrices
An ∈ RIn×R and a “loading vector” λ ∈ RR, subject to a set
of probability simplex constraints, i.e.,

X =

R∑
r=1

λrA1(:, r) ◦A2(:, r) ◦ · · · ◦AN (:, r)

subject to λ > 0, 1Tλ = 1

An ≥ 0, 1TAn = 1T, n = 1, . . . , N,

(3)

where ◦, (·)T, and 1 represent the outer product, the transpose
operator, and an all-ones vector, respectively. It has been
shown in [11] that (3) corresponds to a naı̈ve Bayes model
with a root variable H that takes a finite number R of states.

Given a dataset of T independent and identically distributed
realizations xt = {x1,t, . . . , xN,t} (t = 1, . . . , T ) of X, our
objective is to recover the underlying continuous PDF fX(x)
from an estimate of the discretized PDF (joint PMF) X .
Leveraging on the naı̈ve Bayes structure of X , we propose
to recover fX(x) by interpolating each discretized marginal
distribution An(:, r) = p(Xn |H = r) separately, followed
by recombination of the interpolated marginal PDFs to form
the joint PDF. A similar approach was considered in [5],
where discretization was carried out using uniform bins,
while sinc interpolation was adopted to recover the marginal
PDFs. However, in the following section, we propose a PDF
estimation method that employs nonuniform bins whose width
and number are selected to minimize an MDL criterion. The
resulting nonuniform bins necessitate the use of a different
interpolation strategy. We present motivating examples high-
lighting the advantages of our approach over uniform binning.

III. PROPOSED METHODOLOGY

We propose a PDF estimation framework that addresses
the limitations of uniform binning and sinc interpolation. Our
approach proceeds in three main steps. We first employ an
MDL-based strategy to learn the histogram of each marginal
distribution. By determining both the number and locations of
the bin edges in a data-driven manner, this step captures the
inherent structure of the data. As a result, continuous variables
are effectively transformed into categorical ones. Next, we
recover the complete discretized PDF by applying a maximum
likelihood PMF estimation algorithm (SQUAREM-PMF, [12])
within a coupled nonnegative tensor factorization framework.
Finally, we employ spline interpolation to obtain a smooth
PDF from the discretized joint PDF estimate. Although this
description emphasizes PDF estimation, the same adaptive
binning and smoothing procedure naturally extends to non-
parametric mixture models.

A. MDL binning with quantile cuts

Many histogram density estimation methods rely on uniform
binning, which can be suboptimal if the underlying distribution
is strongly nonuniform or multimodal. Intuitively speaking,
wider bins in regions with sparse data help to reduce noise
from sampling randomness, whereas narrower bins in dense
regions capture fine details more effectively. Therefore, adapt-
ing the bin widths and locations to the data can significantly
improve estimation quality. In the MDL framework [7], the
goal is to select the simplest possible model that sufficiently
explains the observed data by determining both the optimal
number of bins and their locations. This dual optimization is
formalized via the normalized maximum likelihood (NML),
which provides strong theoretical guarantees 2.

Let M =
{
f( · | θ) : θ ∈ Θ

}
denote a histogram model

class (for example, all histograms with K bins). Each θ ∈ Θ
represents a specific choice of bin edges, thereby defining a
particular histogram within this class. We use f

(
x | θ

)
to

denote the density given specific parameters, and f
(
x | θ,M

)
explicitly highlights the density given these parameters within
the chosen histogram model class M. For a univariate sample
x = {x1, . . . , xT } ⊂ X of length T , the maximum-likelihood
estimate is θ̂(x) = argmax

θ∈Θ
f
(
x | θ

)
.

The NML density [13] is defined by

fNML
(
x | M

)
=

f
(
x | θ̂(x),M

)
RM

, (4)

where the normalizing constant RM, known as the parametric
complexity, quantifies the intrinsic complexity of the model:

RM =

∫
x∈X

f(x | θ̂(x),M) dx. (5)

The stochastic complexity of x under M is then given by

SC
(
x | M

)
= − log fNML

(
x | M

)
,

and the MDL principle prescribes selecting model M⋆ and
the corresponding θ̂(x) that minimizes this quantity [15].

An essential step in constructing the MDL-optimal his-
togram is the definition of candidate cut points for the opti-
mization process. The authors in [7] describe two approaches
for selecting candidate cuts. The first, known as the midpoint
approach, places a cut at the midpoint between each pair
of consecutive data points. While this method ensures that
every bin has at least one observation, it does not allow
for empty bins, which is a disadvantage when large gaps
are present. An alternative approach involves placing two cut
points between each pair of consecutive data values, positioned
as close as possible to the data values. Although this method
improves adaptability to data gaps, it significantly enlarges the
candidate-cut set, increasing the computational cost.

Unlike [7], we adopt a quantile-based strategy: candi-
date cuts are the empirical quantiles, giving equal-frequency
bins that mirror the underlying density. This data-adaptive

2The NML criterion provides two important theoretical guarantees: (i) it
uniquely solves Shtarkov’s minimax problem [13], (ii) it also minimizes the
expected worst-case regret in code length among all universal codes [14].
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Fig. 1: The generating density, the MDL-optimal histogram
(19 bins), and the uniform 100-bin histogram (mirrored).

placement captures structure more faithfully while remaining
computationally efficient. Let x(1) ≤ x(2) ≤ · · · ≤ x(T )

denote an ordered sample of size T . The empirical cumulative
distribution function (eCDF) is defined as:

F̂T (y) =
1

T

T∑
t=1

1{x(t) ≤ y},

where 1(·) is the indicator function. For a given probability
p ∈ [0, 1], the empirical quantile Q(p) is defined as the
smallest y such that F̂t(y) ≥ p. In our application, to partition
the support of the data into E equal-frequency bins, we define
the set of candidate interior cuts as:

C̃ =

{
cj = Q

(
j

E

)
= F̂−1

T

(
j

E

)}E−1

j=1

The goal is then to select a K-bin subset C ⊆ C̃ that
minimizes the MDL criterion:

B(x | E,K,C) = SC(x | C) + log

(
E

K − 1

)
, (6)

where SC(x | C) is the stochastic complexity (negative log
NML), measuring how well the model fits the observed data.
The second term, log

(
E

K−1

)
, represents the model complexity

penalty. It measures the description length needed to specify
which K − 1 cut points are chosen from the E possible
candidates. As detailed in [7], the SC is computed recursively,
and the optimal cuts can be found by dynamic programming
in O(E2 · Kmax) time, where Kmax is the maximum number
of bins considered during optimization.

To demonstrate the advantage of the MDL histogram, we
consider a toy example of five-component univariate Gaussian
mixture. In our experiment, samples are drawn from the
mixture depicted in Fig. 1. Fig. 2 shows the mean Kull-
back–Leibler divergence (KLD) (over 50 trials) between the
true and estimated densities. Despite using significantly fewer
bins, the MDL histogram consistently achieves a lower KLD
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Fig. 2: KLD between the true density and its estimates
obtained with the MDL histogram and uniform histograms of
20, 100, and 200 bins.

compared to its uniform counterparts. As the sample size
grows, the performance of the 100 and 200-bin uniform his-
tograms gradually converges to that of the MDL. Interestingly,
at a sample size of 104, the 19-bin MDL histogram signif-
icantly outperforms the uniform 20-bin, despite the nearly
identical bin count. This highlights that the placement of
the bins is as important as the bin count in capturing the
underlying distribution.

B. Estimation of the Discretized PDF

We estimate the joint PMF (discretized PDF) by applying a
low-rank factorization to the discretized data. Specifically, we
adopt the SQUAREM-PMF algorithm proposed in [12], which
extends the expectation-maximization (EM) algorithm pro-
posed in [16] with a squared iterative methods (SQUAREM)
acceleration step, thereby improving convergence speed even
when the data are only partially observed. In this framework,
the joint PMF tensor X is constrained to have a CPD of
rank R. The discretized observations are used in a maximum-
likelihood (ML) setting [16]:

min
{An}N

n=1,λ
−

T∑
t=1

log

(
R∑

r=1

λr

N∏
n=1

An(xn,t, r)

)
subject to λ > 0, 1Tλ = 1

An ≥ 0, 1TAn = 1T, n = 1, . . . , N

(7)

The EM updates for {An} and λ are derived from the ob-
jective (7). However, EM typically exhibits slow convergence.

SQUAREM-PMF addresses this limitation by squaring the
standard EM fixed-point updates. At each iteration, it com-
putes two successive EM steps, then performs a polynomial
extrapolation in parameter space to accelerate convergence–
while preserving the monotonic likelihood increase guaranteed
by EM. Numerical evidence in [12] shows that SQUAREM-
PMF can substantially reduce the iteration count and run
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Fig. 3: Performance versus sample size: (a) KLD, (b) clustering accuracy (CA), and (c) median number of MDL-selected bins.

time compared to both plain EM and other factorization-
based approaches, making it an efficient choice for the PMF
estimation step in our proposed methodology.

C. PDF Reconstruction using Spline Interpolation

In the classical Shannon-sampling framework, a bandlimited
signal can be perfectly reconstructed from uniform samples
via sinc interpolation. In fact, Kargas et al. [5] demonstrated
that a PDF which is (approximately) bandlimited with a cutoff
frequency ωc can be reconstructed from uniformly spaced sam-
ples of its corresponding CDF, provided the sampling interval
∆t ≤ π

ωc
. However, extending this result to our settings is

problematic because the MDL-estimated bins are nonuniform;
consequently, the underlying assumption of uniform sam-
pling (and hence a time-invariant reconstruction kernel) does
not hold. Although generalized non-uniform sampling theory
provides conditions under which sinc interpolation can be
applied to nonuniform samples (see, e.g., [17]), these require
that the average sampling rate satisfies the Nyquist criterion,
something we cannot ensure a-priori with MDL-chosen cuts.
This limitation motivates the use of cubic spline interpola-
tion, which naturally accommodates nonuniform spacing and
produces smooth, continuous curves with continuous first and
second derivatives (i.e., the C2 class) [18]. Let the r-th column
An(:, r) ∈ RIn of the n-th factor matrix An represent the
discretized conditional PDF pXn |H(xn | r) of the n-th random
variable. The corresponding CDF points are obtained via the
cumulative sum of that column, yielding {Fi}Ini=1. For each
bin ∆i = [i, i+ 1], a cubic polynomial is fitted:

Si(x) = ai + bi(x− i) + ci(x− i)2 + di(x− i)3. (8)

This yields a piecewise definition of the continuous CDF

FX|H(xn | r) =
In−1∑
i=1

Si(xn) · 1[i,i+1)(xn), (9)

where

1[i,i+1)(xn) =

{
1, if xn ∈ [i, i+ 1),

0, otherwise.

We enforce zero end-slope conditions (i.e., the first derivative
of the spline is zero at the boundaries). This ensures that the

reconstructed PDF smoothly approaches zero at the boundaries
and prevents unrealistic extrapolation at the edges.

The final PDF is obtained by differentiating the piecewise
CDF approximation:

f̂Xn|H(xn | r) = d

dxn
FXn|H(xn | r)

IV. SIMULATION RESULTS

A. Synthetic Data

We first investigate how the candidate-cutting strategy af-
fects the MDL algorithm. A six-component univariate Gaus-
sian mixture is sampled with T = 20 000 observations, the
experiment is repeated 50 times. Each method starts with the
same upper limit of Kmax = 50 bins and searches for the
MDL-optimal bins. Fig. 4 displays box-plots for the proposed
quantile method, the two-cuts, and mid-points heuristics of [7].
We report (i) the bins count, (ii) the MDL score 3, (iii) the run-
time (in minutes), and (iv) the negative log-likelihood (NLL).
The MDL-score and NLL box-plots almost entirely overlap
across the three strategies; medians and inter-quartile ranges
coincide, indicating statistically similar fit quality. The runtime
boxes, however, are spread over two orders of magnitude: the
quantile method finishes in under 1 min, the mid-points grid
centers around 20 min, and the two-cuts exceeds 70 min. These
results indicate that restricting the candidate set via quantiles
does not impose a significant loss in MDL optimality or
likelihood fit, yet drastically improve computational efficiency.

Next, we evaluate our MDL-based PDF framework against
a uniform discretization baseline following the set-up of [5].
Here, data are generated from five-dimensional Gaussian mix-
ture (N = 5, R = 6), and the accuracy is measured by
the KLD between the true and estimated densities, averaged
over 100 Monte-Carlo trials. We compare the performance
of our algorithm to that of the classical Gaussian mixture
model based on EM (EM GMM), coupled tensor factorization
algorithm based on alternating optimization and a KLD loss
criterion (CTF-AO-KL) [5], and the “Oracle” method, which
assumes that the labels (latent states) are known and serves
as an empirical lower bound for the KLD. As shown in

3We refer to (6) as the MDL score which quantifies the quality of the MDL
histogram.
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Fig. 3 (a),(b), our approach outperforms the uniformly binned
(20 bins) CTF-AO-KL in both KLD and clustering accuracy.
Fig. 3 (c) demonstrates how the histogram grows with T .
When T is small, adding many cuts would leave only a few
points per bin, so the NML term cannot compensate for the
MDL penalty. As more data become available, each prospec-
tive bin contains enough points to estimate its probability
reliably; the NML term now rewards a finer partition, making
higher-resolution histogram both feasible and favorable. Al-
though the EM GMM remains a practical choice for modeling
Gaussian mixtures, its performance can be compromised if the
discretization is not well adapted to the underlying density.

B. Real Data

We further evaluate our proposed approach on a real dry
bean dataset [19]. In this experiment, each sample is charac-
terized by features from 7 different dry bean varieties, and the
objective is to accurately predict the bean class. Initially, we
estimate the model rank using variational Bayesian inference
(VB-PMF) [20]; given an upper bound for the rank R (e.g. the
maximum rank for which the Kruskal identifiability condition
for the CPD is satisfied [10]), this algorithm automatically
prunes irrelevant components to determine the effective rank.
The estimated rank (R = 48) is then used to train our
method and other competing algorithms. We randomly split
the data into training set (80%) and testing set (20%). We
calculate the classification accuracy (defined as the proportion
of correctly classified samples to the total number of samples)
and report the results averaged over 50 random data splits.
In general, as demonstrated in Table I, our method achieves
higher classification accuracy while also significantly reducing
the computational cost.

V. CONCLUSION

In this paper, we introduced a unified framework that com-
bines MDL and tensor factorization for non-parametric PDF
estimation. By integrating a quantile-based cutting strategy, we
improved the MDL computation time without compromising
the performance. Experimental results on both synthetic and
real datasets demonstrated the advantage of our approach
compared to conventional uniform binning methods.

TABLE I: Models Performance in Multiclass classification of
dry beans (mean ± std).

Model Class. Acc. Runtime [min]

VB-PMF 86.85±0.62 8.67±0.56
Proposed 87.72±0.67 2.49±1.24
CTF-AO-KL 87.04±0.59 75.3±10.9
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