
Non-parametric B-spline decoupling of
multivariate functions

Joppe De Jonghe
Dept. of Computer Science

NUMA, KU Leuven
Geel, Belgium

joppe.dejonghe@kuleuven.be

Mariya Ishteva
Dept. of Computer Science

NUMA, KU Leuven
Geel, Belgium

mariya.ishteva@kuleuven.be

Abstract—Many scientific fields and applications require com-
pact representations of multivariate functions. For this problem,
decoupling methods are powerful techniques for representing the
multivariate functions as a composition of linear transformations
and nonlinear univariate functions.

This work introduces an efficient decoupling algorithm that
leverages the use of B-splines to allow a non-parametric es-
timation of the decoupling’s internal functions. The use of B-
splines alleviates the problem of choosing an appropriate basis,
as in parametric methods, but still allows an intuitive way to
adjust the flexibility of the estimated functions. Besides the non-
parametric property, the use of B-spline representations allows
for easy integration of nonnegativity or monotonicity constraints
on the function shapes, which is not trivial for the currently
available (non-)parametric decoupling methods.

The proposed algorithm is illustrated on synthetic examples
that highlight the flexibility of the B-spline representation and
the ease with which a monotonicity constraint can be added. The
examples also show that if monotonic functions are required,
enforcing a constraint is necessary.

Index Terms—Tensor, Decomposition, Decoupling, B-spline

I. INTRODUCTION

Finding compact representations of multivariate functions
forms an essential part of many scientific fields, such as
block-oriented system identification [1] and deep neural net-
work compression [4]. The decoupling methodology [2] is a
powerful technique that aims at representing a function by
a composition of linear transformations, with elementwise
nonlinear functions sandwiched between them (see Fig. 1).
The advantage of the decoupling formulation is that it allows
to leverage a tensor decomposition, which makes it attractive
in many applications [4], [6]. The decoupled representations
can be viewed as neural networks with trainable activation
functions, per neuron [4].

Dreesen et al. [2] introduced a tensor-based method for solv-
ing the decoupling problem based on first-order information
of the given function and the computation of the Canonical
Polyadic Decomposition (CPD) of a third-order tensor. In the
noiseless case it is guaranteed to solve the decoupling problem
thanks to the uniqueness properties of the CPD. To deal with
more practical noisy, or non-unique CPD scenarios, several
approaches have been proposed, including [3]–[6]. One of
the key issues is the estimation of the nonlinear functions in
Fig. 1.

To this end, Hollander et al. [6] propose parameterizing
the internal functions gi as polynomials of a certain degree.

Fig. 1: Decoupling of a multivariate function f(x) (left) into
the model f(x) = W1g(W0x) (right) constitutes a linear
transformation of the input by W0, followed by branches of
univariate functions and a final linear transformation by W1.

Zniyed et al. [4] provide a more general basis function
representation but choose to parameterize the functions gi
as piecewise linear functions for their application of neural
network compression. In contrast, Decuyper et al. [3] present
an algorithm with a fully non-parametric representation of the
decoupling’s internal functions.

The drawback of existing approaches is that they mostly
assume a simple parametric form of the internal functions
(polynomial and piecewise linear) [4], [6]. The exception
is the work of Decuyper et al. [3], which presents a non-
parametric ’filtering’ approach to estimating internal functions,
but this approach is mostly heuristic and comes at a higher
computational cost.

In this paper, we propose a principled alternative that uses
B-splines for the internal functions and develop an algorithm
for it. Such a choice allows us to develop a coupled matrix-
tensor factorization algorithm that is not only efficient, but also
provides a non-parametric estimation of the internal functions.
Unlike polynomials, B-splines result in better behavior of the
algorithm steps.

II. NOTATIONS AND TENSOR BACKGROUND

A. Notations

Matrices and vectors are denoted with bold capital and low-
ercase letters, respectively. Tensors are denoted by calligraphic
capital letters. For a third order tensor X of size I×J×K, the
i-th horizontal, j-th lateral and k-th frontal slice are denoted by
Xi,:,:, X:,j,: and X:,:,k respectively. The operation unfoldk(X )
unfolds the tensor X over its k-th mode as described in [8].
The i-th row and j-th column of a matrix A are denoted as
Ai,: and A:,j respectively. The symbol ⊙ denotes the Khatri-
Rao product. Finally, the diag(.) operation forms a diagonal
matrix where the main diagonal is the vector that is provided

2117ISBN: 978-9-46-459362-4 EUSIPCO 2025



as parameter and ∥.∥ denotes the Frobenius norm of a tensor,
defined as the square root of the sum of the squares of its
elements.

B. Canonical polyadic decomposition

The canonical polyadic decomposition (CPD) [8] of a third-
order tensor X ∈ RI×J×K expresses the tensor as a sum of
rank-one tensors, or alternatively, the tensor X admits a CPD
if its slices can be represented as

X:,:,k = A · diag(Ck,:) ·B⊤, for k = 1, 2, . . . ,K, (1)

where A ∈ RI×r, B ∈ RJ×r and C ∈ RK×r are the factor
matrices. We use the notation X = [[A,B,C]]. The canonical
rank is the smallest value r for which equation (1) holds.

The CPD described in equation (1) is unique under mild
conditions. Several sufficient uniqueness conditions exist (for
example Kruskal’s condition), see [9] for an overview. Unique-
ness here means that the CPD is unique up to the following
scaling and permutation ambiguities [8]:

X = [[AΠΛA,BΠΛB,CΠΛC]],

with permutation matrix Π ∈ Rr×r and diagonal matrices
ΛA, ΛB, ΛC for which ΛAΛBΛC = I.

III. DECOUPLING

A. The decoupling problem

Dreesen et al. [2] formulate the decoupling problem as
follows: given a multivariate vector function f : Rm → Rn,
find a decoupled representation of f(x) such that

f(x) = W1g(W0x) (2)

with linear transformation matrices W1 ∈ Rn×r,W0 ∈ Rr×m

and g(u) =
[
g1(u1) g2(u2) · · · gr(ur)

]⊤ ∈ Rr consists
of univariate functions gi : R → R. Dreesen et al. [2]
propose a tensor-based solution strategy that uses the first-
order information of f(x). This first-order information is
encapsulated in the Jacobian Jf (x)

Jf (x) =


∂f1(x)

∂x1
. . .

∂f1(x)

∂xm
...

...
∂fn(x)

∂x1
. . .

∂fn(x)

∂xm

 ∈ Rn×m,

where, under the assumption that f(x) follows the model in
equation (2), it holds that

Jf (x) = W1 diag(g′(W0x)) W0.

Next, Jf (x) can be evaluated in S sample points x(s) ∈ Rm,
for s = 1, 2, . . . , S,

Jf (x
(s)) = W1 diag(g′(W0x

(s))) W0 = W1 D(s)
g W0.

Note here that 1) D
(s)
g ∈ Rr×r is diagonal and 2) W0 and

W1 are independent of the sample point x(s) [2].

As a result, stacking the Jacobian matrices Jf (x
(s)), for

s = 1, 2, . . . , S, as frontal slices of a third-order tensor yields
a Jacobian tensor J ∈ Rn×m×S , for which

J:,:,s = Jf (x
(s)) = W1 D(s)

g W0, (3)

for s = 1, 2, . . . , S. This shows that by construction, the tensor
J admits a CPD, J = [[W1,W

⊤
0 ,G]], where for W0x

(s) =
u(s) ∈ Rr, for s = 1, 2, . . . , S, the factor matrix G is

G =


g′1(u

(1)
1 ) . . . g′r(u

(1)
r )

...
...

g′1(u
(S)
1 ) . . . g′r(u

(S)
r )

 . (4)

Equation (3) indicates that computing the CPD of J yields
the factor matrices W1 and W0 of the decoupled model (2)
as well as the matrix G ∈ RS×r which contains first-order
information of the internal functions gi, for i = 1, 2, . . . , r.

The tensor-based solution strategy is summarized as:
1) Evaluate the Jacobian of f(x) in S sample points x(s),

yielding Jf (x
(1)),Jf (x

(2)), . . . ,Jf (x
(S)).

2) Stack the Jacobian matrices Jf (x
(s)), for s =

1, 2, . . . , S, into the tensor J ∈ Rn×m×S .
3) Compute the CPD of J , yielding W1,W0 and G up

to scaling and permutation ambiguities.
4) Use the first-order information in G to determine the

representation of the decoupling’s internal functions gi.

B. Representation of the internal functions

Ideally, a representation is chosen such that the decoupling’s
internal functions can be represented in a non-parametric way
without adding substantial algorithmic complexity. To this end,
this work introduces the use of B-spline functions to represent
the internal functions gi (or derivatives g′i), for i = 1, 2, . . . , r,

gi(ui) = ci,0 +

df∑
j=1

ci,jB
∆i

j,d (ui), differentiate to get g′i, (5)

or

g′i(ui) =

df∑
j=1

ci,jB
∆i

j,d−1(ui), integrate to get gi, (6)

where df , d and ∆i are the degrees of freedom (DoF), order
and knot vector of the spline, respectively. The coefficients
ci,j are to be learned as part of the decoupling problem.

The proposed B-spline representation allows to easily in-
corporate constraints on the internal functions gi, such as
nonnegativity or monotonicity, by constraining the coefficients
of the spline to be nonnegative. This is not trivial for a
polynomial parameterization or the non-parametric method of
Decuyper et al. [3].

C. Optimization problem

A critical part of the tensor-based solution strategy is the
computation of the CPD of J . The following optimization
problem formulates the unstructured CPD of J

min
W1,W0,G

∥J − [[W1,W
⊤
0 ,G]]∥2. (7)

2118



However, optimization problem (7) only uses first-order infor-
mation of f(x). Because of this, it is unable to approximate
the constant terms of the internal functions gi and the resulting
system f̂(x) will show a bias relative to the actual system
f(x). The two main strategies to solve this problem are 1)
correcting the bias of the computed decoupling f̂(x) as a
whole in a second step, as done by Decuyper et al. [3], and 2)
adding zeroth-order information into the optimization problem
to directly estimate the constant terms of the internal functions
gi, as done by Zniyed et al. [4].

This work adopts the strategy of [4] and integrates a zeroth-
order information matrix F ∈ Rn×S into optimization problem
(7). The structure of F is given by

F =
[
f(x(1)) f(x(2)) · · · f(x(S))

]
= W1

[
g(u(1)) g(u(2)) · · · g(u(S))

]
(8)

= W1 ·R⊤,

where u(s) = W0x
(s) ∈ Rr and R ∈ RS×r contains zeroth-

order information of the internal functions gi.
Incorporating F into optimization problem (7) results in a

coupled matrix-tensor factorization (CMTF) [4], [11]

min
W1,W0,G,R

∥J − [[W1,W
⊤
0 ,G]]∥2 + λ∥F−W1R

⊤∥2. (9)

This problem still computes an unstructured CPD of J .
However if the reconstruction error of the CPD is non-zero,
or the computed CPD is not unique then there is no guarantee
that the computed G and R have the required structure.

We take this problem into account by forcing the required
structure onto G and R through the B-spline representation of
the internal functions given in equations (5) and (6). Equations
(4) and (8) show the structure of G and R respectively. This
structure is enforced by adding the following constraints on
the columns of G and R

G:,j = Bj · cj for j = 1, 2, . . . , r, (10)

R:,j = B̃j · cj for j = 1, 2, . . . , r, (11)

where cj =
[
cj,0 cj,1 · · · cj,df

]⊤ ∈ Rdf+1. The matrices
Bj ∈ RS×df+1 and B̃j ∈ RS×df+1 are the B-spline design
matrices, evaluated at the values u

(s)
j = (W0x

(s))j , for
s = 1, 2, . . . , S, with an extra first column such that B:,1

is a column of zeros and B̃:,1 is a column of ones. The extra
column is to take into account the constant term cj,0 in cj .

Incorporating (10) and (11) as constraints in optimization
problem (9) yields the final optimization problem

min
W1,W0,
{cj}r

j=1

∥J − [[W1,W
⊤
0 ,G]]∥2 + λ∥F−W1R

⊤∥2 (12)

s. t. G:,j = Bj · cj for j = 1, 2, . . . , r,

R:,j = B̃j · cj for j = 1, 2, . . . , r.

The λ parameter is typically set to a fixed low value, 0.01 or
0.1, and stays fixed during execution or is increased over time.

IV. ALGORITHM

This work uses the efficient projection strategy algorithm
introduced by Zniyed et al. [4] to solve optimization problem
(12). However, the projection step is adapted to facilitate the
B-spline representations (5) and (6) and allow nonnegativity or
monotonicity constraints on the internal functions. The use of
B-splines combines the efficiency of the projection algorithm
with the non-parametric property of Decuyper’s algorithm [3].

Algorithm 1 shows the full algorithm, called CMTF-BSD
(CMTF B-Spline Decoupling). The CMTF-BSD algorithm
normalizes the columns of W⊤

0 for improved conditioning,
which is not part of the algorithm proposed by Zniyed [4].
The normalization procedure is given in Algorithm 2.

Algorithm 1 CMTF-BSD algorithm

Input: J ∈ Rn×m×S ,F ∈ Rn×S , df, d, r, samples ∈ Rm×S

1: W0,G,R← Random initialization
2: while stop criteria not met do
3: W1 ← argmin

W1

∥unfold1(J )−W1 · (G⊙W⊤
0 )

⊤∥2

4: +λ∥F−W1R
⊤∥2

5: W0 ← argmin
W0

∥unfold2(J )−W⊤
0 · (G⊙W1)

⊤∥2

6: W0,W1 ← Normalize columns W⊤
0 (W0,W1)

7: G← argmin
G
∥unfold3(J )−G · (W⊤

0 ⊙W1)
⊤∥2

8: R← argmin
R
∥F−W1 ·R⊤∥2

9: xSamples←W0· samples
10: G,R← Bspline projection (G,R, df, d, xSamples)
11: end while
Output: W1,W0,G,R

Algorithm 2 Normalize columns W⊤
0

Input: W0,W1

1: for i = 1, 2, . . . , r do
2: β ← ∥(W⊤

0 )
:,i∥

3: (W⊤
0 )

:,i ← (W⊤
0 )

:,i/β

4: W:,i
1 ← β W:,i

1

5: end for
Output: W0,W1

Algorithm 3 shows the B-spline projection step (line 10
in Algorithm 1) in more detail. The Determine knots function
retrieves the knots from the input values xj based on quantiles,
which depend on the degrees of freedom df and the order
d of the spline [7]. The Design matrix(.) function constructs
the B-spline design matrix for the given parameters ∆j , df
and d, evaluated at the points xj . The Differentiate(.) and
Integrate(.) functions construct the B-spline design matrix for
the derivatives and indefinite integrals respectively, of the B-
spline basis that was used to construct the design matrix that
is given as a parameter, evaluated in the same points.

Enforcing a monotonicity or nonnegativity constraint on the
internal functions gi can be done by using nonnegative least
squares to solve for cj on line 11 in algorithm 3.

2119



Algorithm 3 Bspline projection

Input: G,R, df, d, xSamples ∈ Rr×S

1: for j = 1, 2, . . . , r do
2: xj ← xSamplesj,:

3: ∆j ← Determine knots(xj , df, d)
4: if Representation (5) used then
5: B̃← Design matrix(xj ,∆j , df, d)

6: B← Differentiate(B̃)
7: else if Representation (6) used then
8: B← Design matrix(xj ,∆j , df, d)

9: B̃← Integrate(B)
10: end if
11: cj ← argmin

cj

∥G:,j −B · cj∥2 + λ∥R:,j − B̃ · cj∥2

12: G:,j ← B · cj , R:,j ← B̃ · cj
13: end for

Output: G,R

V. EXPERIMENTS AND RESULTS

A. Metrics

The following metrics are used in the experiments

Error(J ) = ∥J − Ĵ ∥
2

∥J ∥2
,

ei =

√
1
S

∑S
s=1

(
fi(x(s))− f̂i(x(s))

)2

√
1
S

∑S
s=1

(
fi(x(s))− E(fi)

)2 × 100,

where Ĵ is the approximation of J resulting from the CMTF-
BSD algorithm. Note here that ei is a relative error on the ith
output of f(x), as a percentage and E(fi) is the average value
of the ith output over the S sampling points.

B. Effect of DoF and degree of spline representation

In this section, the CMTF-BSD algorithm is executed on a
system with trigonometric internal functions

ftrig(x) = W1g(W0x), (13)

W1 =

[
−1.7 −2.3 2.5
0.5 −0.5 0.2

]
,W0 =

 2.1 −1
0.4 −1.8
−1.6 −0.2

 ,

g(u) =

 sin(u1) + 2
cos(2 · u2)− 1.5

sin(2 · u3) +
u3

2


The goal of the CMTF-BSD(.) algorithm is to retrieve

the decoupled representation (13) from the Jacobian tensor
J and zeroth-order information matrix F. The decoupled
representation contains 3 internal functions and only 2 inputs
and outputs, leading to a non-unique CPD of J . Note that the
experiments in this work use the known, correct, canonical
rank r. In a practical setting, different ranks r will have to be
tested to determine the optimal one.

For the experiment, the algorithm is executed 30 times for
different spline degrees (d = 1, 2, 3) and DoF (4, 6, . . . , 28),

Fig. 2: Results for applying the CMTF-BSD(.) Algorithm 1
to the sytem ftrig of equation (13), for 30 executions per
(d, df) pair where d ∈ {1, 2, 3} and df ∈ {4, 6, . . . , 28}. Top
figure: the relative reconstruction error of the Jacobian tensor
J ; middle figure: the relative error of the computed system
for the first output; bottom figure: the relative error for the
second output. The red dotted line indicates an error of 1%.

using representation (5). After executing the CMTF-BSD algo-
rithm, the discovered internal function shapes are interpolated
by polynomials of degree 10. The Jacobian is constructed with
S = 100 sample points drawn uniformly from [−1.5, 1.5]2,
yielding the tensor J ∈ R2×2×100 and matrix F ∈ R2×100.
Each execution draws a new set of 100 sample points.

Fig. 2 shows the results for ftrig (outliers are not plotted
for readability). The cubic spline representation, i.e., d = 3,
performs the best, yielding output errors below 1% when df ≥
12. The approximation of ftrig is worse for d = 2, as less
flexibility requires a higher df value to reach output errors
below 1%. The case for which d = 1 gives the worst results.
The executions for which the output errors drop below 1%
are able (or close) to recover the system ftrig, even though
the CPD itself is not unique.

The problem of recovering ftrig can be seen as a regression
task for which the case of d = 1 is not optimal since this
results in piecewise linear functions gi that are interpolated by
polynomials in a second step. For the piecewise linear case
of d = 1, a neural network or decision boundary problem
such as in [4] is more relevant. Do note here that compared
to [4], achieving piecewise linear functions does not require
a different basis as we just set the degree of the B-spline
representation equal to 1.

C. Monotonically increasing internal functions

This section explores the incorporation of a monotonic-
ity constraint on the decoupling’s internal functions gi. The
constraint is enforced through the use of the B-spline rep-
resentation (6) where the coefficients cj on line 11 of the
Bspline projection Algorithm 3 are computed using non-
negative least squares. Since B-spline basis functions are
nonnegative, this results in nonnegative derivatives g′i and
monotonically increasing internal functions gi.

2120



Fig. 3: Reconstruction errors for the Jacobian tensor J ,
for 30 executions of the CMTF-BSD(.) Algorithm 1 and
degrees of freedom df ∈ {8, 10, 12, . . . , 20}, with and without
monotonicity constraint. The monotonic (+) results compute
the coefficients on line 11 of Algorithm 3 with nonnegative
least squares to retrieve monotonically increasing functions.

However, it is possible when using nonnegative least squares
that during intermediate steps of the algorithm the coefficients
cj are computed to be all zero, which crashes the algorithm if
not taken into account. To take this into account, an extra check
is added after the computation of the coefficients cj where,
if the computed coefficients are all zero, the function g′i is
replaced by a monotonically increasing LeakyReLU activation
function [10] with a slope of 0.5 for the negative part.

The system used for the experiment has 3 inputs, 3 outputs
and 3 monotonically increasing internal functions
g(u) =

[
g1(u1) g2(u2) g3(u3)

]⊤
,

g1(u1) =
u3
1

3
+ u1, g2(u2) = eu2 , g3(u3) =

1

1 + e−u3
.

The entries of the factor matrices W0 ∈ R3×3 and W1 ∈
R3×3 are randomly drawn from U(−2, 2), for each execution
of the algorithm.

Fig. 3 shows the results for 30 executions of the CMTF-
BSD algorithm for the described system with d = 4 and df ∈
{8, 10, 12, . . . , 20}. The algorithm is executed both with and
without the monotonicity constraint, denoted as ’Monotonic
(+)’ and ’Unconstrained’ respectively. For the ’Monotonic (+)’
results, an unconstrained decoupling is used as initialization.

Fig. 3 shows that the median reconstruction errors for J are
improved by adding the monotonicity constraint. More impor-
tantly, Table I shows that for the unconstrained case, even
if the underlying functions of the system are monotonically
increasing or decreasing, there is no guarantee that the result-
ing functions are monotonic. On the other hand, by enforcing
the monotonicity constraint the resulting decouplings from all
30 executions have certified monotonically increasing internal
functions.

TABLE I: Number of executions of the CMTF-BSD algorithm
(out of 30) for df ∈ {8, 10, 12, . . . , 20}, where the resulting
decoupling has certified monotonic internal functions.

Degrees of freedom (df )
8 10 12 14 16 18 20

Unconstrained 9 8 8 12 14 16 14
Monotonic (+) 30 30 30 30 30 30 30

VI. CONCLUSION

This work introduced the CMTF-BSD decoupling algo-
rithm, which combines the efficiency of the decoupling al-
gorithm of Zniyed [4] and the non-parametric property of
that of Decuyper [3]. This is done by 1) using the projection
algorithm of [4] and 2) incorporating a B-spline representation
of the internal functions to allow non-parametric estimation.
In addition, as shown in the experiments, the use of B-splines
allows to easily enforce a nonnegativity or monotonicity con-
straint, which is not trivial for a polynomial basis or the non-
parametric method of Decuyper [3]. The constrained example
in section V-C shows good results for the incorporation of
a monotonicity constraint and the fact that, even when the
underlying functions are monotonic, adding the constraint
is necessary for guaranteed monotonicity. Furthermore, the
example in section V-B shows that the CMTF-BSD algorithm
performs well on a system with trigonometric functions, which
would require a high degree polynomial to approximate. The
CMTF-BSD algorithm achieves stable output errors below 1%
for different configurations of d and df and is able to recover
the underlying system despite a non-unique unstructured CPD.

Future work includes analyzing the use of other spline
types such as smoothing splines and natural cubic splines
[7], improving the incorporation of constraints, providing a
formal complexity analysis of the algorithm to compare with
Decuyper [3], applying the CMTF-BSD algorithm to different
applications in system identification and neural network com-
pression and formalizing the theoretical basis of the proposed
algorithm through existing B-spline approximation theory.

ACKNOWLEDGMENT

This work was supported by the FWO (FWO Vlaanderen)
fundamental research fellowship 11A2H25N and KU Leuven
C2 project 3E230536-SPECTRAI.

REFERENCES

[1] Dreesen, P., Esfahani, A. F., Stoev, J., Tiels, K., & Schoukens, J. (2016,
January). Decoupling nonlinear state-space models: case studies. In
Proceedings of the International Conference on Noise and Vibration
Engineering (ISMA) (pp. 2639-2646).

[2] Dreesen, P., Ishteva, M., & Schoukens, J. (2015). Decoupling multivari-
ate polynomials using first-order information and tensor decompositions.
SIAM J. Matrix Anal. Appl., 36(2), 864-879.

[3] Decuyper, J., Tiels, K., Weiland, S., Runacres, M. C., & Schoukens, J.
(2022). Decoupling multivariate functions using a nonparametric filtered
tensor decomposition. Mech. Syst. Signal Process., 179, 109328.

[4] Zniyed, Y., Usevich, K., Miron, S., & Brie, D. (2021, October). A
tensor-based approach for training flexible neural networks. In 2021 55th
Asilomar Conf. Signals Syst. Comput. (pp. 1673-1677). IEEE.

[5] Zniyed, Y., Usevich, K., Miron, S., & Brie, D. (2021). Learning
nonlinearities in the decoupling problem with structured CPD. IFAC-
PapersOnLine, 54(7), 685-690.

[6] Hollander, G. (2017). Multivariate polynomial decoupling in nonlinear
system identification.

[7] de Boor, C. (1978). A Practical Guide to Splines, Springer.
[8] Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and

applications. SIAM review, 51(3), 455-500.
[9] Sidiropoulos, N. D., et al. (2017). Tensor decomposition for signal

processing and machine learning. IEEE Trans. Signal Process., 65(13),
3551-3582.

[10] Lederer, J. (2021). Activation functions in artificial neural networks: A
systematic overview. arXiv preprint arXiv:2101.09957.

[11] Liu, Y. (Ed.). (2021). Tensors for data processing: theory, methods, and
applications. Academic Press.

2121


