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University of Toulouse

ISAE-SUPAERO

Abstract—Global Navigation Satellite Systems (GNSS) rely on
estimating the signal propagation delay and Doppler shift to a set
of visible satellites, which in turn allows to determine the receiver
position, velocity and timing. However, the presence of inter-
fering signals degrades the estimation of such synchronization
parameters, reason why robust solutions must be accounted for.
Considering constant modulus (CM) interferences, which include
chirp and continuous wave signals, a recent solution proposed
an expectation-maximization (EM) algorithm to estimate both
interference and signal parameters, which relies on the von
Mises distribution to exploit the interference CM property. In
this contribution, we exploit the geometric properties of the CM
family using a Riemannian framework, where CM interferences
are modeled as a Riemannian manifold. This modeling allows
the E-step of the EM algorithm to be replaced by a Riemannian
gradient descent over that manifold. Results show that the
proposed method improves the estimation performance and
reduces the complexity compared to the classical EM approach.

Keywords—Expectation maximization, Riemannian manifold
optimization, GNSS, constant modulus interference.

I. INTRODUCTION

It is well known that Global Navigation Satellite Systems
(GNSS) are vulnerable to a variety of non-nominal propagation
conditions, threats and attacks, and in particular to interference
sources (i.e., either intentional or unintentional). Therefore, in-
terference mitigation techniques are essential in safety critical
applications for reliable positioning. [1], [2]. Indeed, GNSS
signals received power is roughly −159 dBW [3], which
implies that these signals are deeply buried under the noise
floor, making them particularly susceptible to interference.

A particularly effective interference mitigation strategy is
to resort to antenna arrays, which allow to implement beam-
forming or null-steering methods [4], but this is of limited
applicability for small platforms or low-cost mass-market
receivers. For single antenna receivers, a variety of techniques
have been proposed in the literature, where interference can
be mitigated at various stages [5]. Most of the traditional
techniques are applied before the correlation step, including
pulse blanking [6], where samples exceeding a fixed energy
threshold are set to zero, and notch filtering [7], where the
jammer’s frequency is tracked and removed from the received
signal. Recent approaches resort to spectral estimation [8],
deep neural networks [9] or robust statistics [10], [11]. In
contrast, the method recently presented in [12], [13] exploits
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a parametric statistical model for constant modulus (CM)
interferences, and consider an expectation-maximization (EM)
algorithm to estimate both GNSS parameters and interference.

In this article, we focus on the EM approach, an iterative
algorithm consisting of two steps: 1) the E-step can be
interpreted as the estimation of the statistical mean of the
interference, which is then subtracted from the received signal
to isolate a cleaner GNSS signal; 2) the M-step involves esti-
mating the corresponding delay and Doppler using a classical
maximum likelihood estimator (MLE). These two steps are
repeated iteratively until convergence. But in the E-step, the
mean vector does not necessarily preserve the CM property.

CM interferences exhibit a specific geometric structure,
represented as a product of unit circles, which can be leveraged
to improve the synchronization parameters estimation through
manifold optimization. In [14], Riemannian optimization was
applied to an array signal processing problem under a CM
constraint, where the interference mitigation problem was
modeled as a constrained minimization task, and the CM
property was embedded within the Riemannian manifold
framework. The goal was to exploit the CM property on the
reflection coefficient of the array. In this contribution, we
further explore the approach in [12], [13] and propose to
replace the E-step of the EM algorithm, designed for GNSS
CM interference mitigation, with a Riemannian optimization
over the manifold of CM interferences. This ensures that the
estimated interference preserves the CM property, leading to
a more robust solution compared to the classical one.

II. SIGNAL MODEL

We consider a system where a band-limited signal s(t), with
bandwidth B, is transmitted over a carrier frequency fc (i.e.,
λc =

c
fc

) from a transmitter T at position pT (t) to a receiver
R at position pR(t). Assuming a first-order approximation,
the T to R distance is given by

pTR ≈ c(τ + bt), (1)

where τ = ∥pT (0)−pR(0)∥
c and b = ∥v∥

c , with v representing
the relative velocity vector between the transmitter and re-
ceiver. Under the narrowband assumption and considering an
interference I(t) degrading the received signal, the baseband
demodulated signal can be expressed as [15]:

x(t;η) = αs(t− τ)e−j2πfc(b(t−τ)) + I(t) + n(t), (2)
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with η = (τ, b)⊤ and α = ρejϕ ∈ C. Moreover, n(t)
represents an additive circularly symmetric complex Gaussian
noise. Considering N = N2−N1+1 samples at the sampling
frequency Fs = B = 1

Ts
, the discrete vector signal model is

x = αµ(η) + I + n, (3)

with x = (. . . , x (kTs) , . . .)
⊤, I = (. . . , I (kTs) , . . .)

⊤

the interference samples, n = (. . . , n (kTs) , . . .)
⊤ ∼

CN (n;0, σ2IN ) the noise samples, with N1 ≤ k ≤ N2 and

µ(η) = (· · · , s(kTs − τ)e−j2πfcb(kTs−τ) · · · )⊤ ∈ CN , (4)

the signal component. Under the CM interference, all the
components of the vector I have the same modulus A ≥ 0.
Then, the interference I can be expressed as follows:

I = AĨ, (5)

where Ĩ = (· · · , Ĩk, · · · )⊤ with Ĩk = ejθk and |Ĩk| = 1. Note
that θk ∈ (0, 2π] and θ = (· · · , θk, · · · )⊤, which means that
Ĩ belongs to the complex hyper-torus of dimension N .

III. MAXIMUM LIKELIHOOD PARAMETER ESTIMATION
VIA EXPECTATION-MAXIMIZATION

Assuming independent and identically distributed (i.i.d.)
samples, the likelihood function can be written as [12], [13]

p(x|θ, ε) = 1

πNσ2N
e−

1
σ2 (x−αµ(η)−AĨ)H(x−αµ(η)−AĨ), (6)

with ε = {η⊤, ρ, ϕ,A, σ2} the vector of unknown determinis-
tic parameters. To estimate the GNSS parameters of interest,
gathered in η, the MLE seeks to maximize (6). However, this
maximization is intractable due to the unknown vector θ. A
possible solution, as in [12], is to resort to the EM algorithm,
which allows to approximate the MLE when latent variables
are present. Then, we consider θ as latent variables and we
derive the so-called complete likelihood, which is the joint
likelihood of the observed and latent random variables

Lc(ε;x,θ) = p(x,θ|ε) = p(x|θ, ε)p(θ). (7)

Considering independent uniform priors on [0, 2π) for θk,

p(θ) =

N∏
i=1

1

2π
1[0,2π)(θk), (8)

leading to the following complete likelihood expression,

Lc(ε;x,θ) ∝
1

σ2N
e−

1
σ2 (x−αµ(η)−AĨ)H(x−αµ(η)−AĨ) (9)

∝ e−
1
σ2 (x−αµ(η))H(x−αµ(η))−A2N

σ2 + 2A
σ2 Re{ĨH(x−αµ(η))}

σ2N
,

where Re {·} is the real part operator. The EM algorithm
consists of two steps: 1) the expectation E-step, where the like-
lihood to maximize is locally approximated by the expected
value of the latent parameters θ, holding the parameters to be
estimated fixed as ε(t) (i.e., superscript (t) refers to the t-th
algorithm iteration), and 2) the maximization M-step, where
the parameters to estimate are updated by maximizing the

approximation with respect to ε. This process is iterated until
convergence. In the E-step, the approximation is expressed as,

Q(ε|ε(t)) = Eθ|x,ε(t) [logLc(ε;x,θ)] =
A2

σ2

(
Î
(t)
)H

Î
(t)

− A2

σ2
N +K ′ −N log σ2 −

∥∥∥x− ρejϕµ(η)−AÎ
(t)
∥∥∥2

σ2
,

(10)

where the conditional distribution θk|x, ε(t), is a von Mises
distribution with mean γ

(t)
k and spread parameter κ(t)

k as

γ
(t)
k = arg

(
xk − α(t)µk

(
η(t)

))
(11)

κ
(t)
k =

2A(t)

(σ(t))2

∣∣∣xk − α(t)µk

(
η(t)

)∣∣∣ (12)

where xk, resp. µk

(
η(t)

)
, is the k-th component of the vector

x, resp. µ
(
η(t)

)
. Moreover, Î

(t)
= (· · · , w(t)

k ejγ
(t)
k , · · · ) is

the t-th iteration estimate of Ĩ , with w
(t)
k =

I1
(
κ
(t)
k

)
I0

(
κ
(t)
k

) and Ip

the modified Bessel function of the first kind and order p. The
derivation of such expression can be found in [12]. The M-step
updates the value of ε as

ε(t+1) = argmax
ε

Q(ε|ε(t)). (13)

Defining U =
(
Î
(t)
)H

Πµ(η) and U⊥ =
(
Î
(t)
)H

Π⊥
µ(η),

yields (as it has been shown in [12])1

η(t+1) = argmax
η

∥∥∥∥∥∥∥Πµ(η)

x− Re
{
U⊥x

}
Î
(t)

N − Re
{
UÎ

(t)
}

∥∥∥∥∥∥∥
2

,

(14)

ρ(t+1) =

∣∣∣∣∣∣∣
µ
(
η(t+1)

)H (
x−A(t+1)Î

(t)
)

µ
(
η(t+1)

)H
µ
(
η(t+1)

)
∣∣∣∣∣∣∣ , (15)

φ(t+1) = arg

µ
(
η(t+1)

)H (
x−A(t+1)Î

(t)
)

µ
(
η(t+1)

)H
µ
(
η(t+1)

)
, (16)

A(t+1) =

Re
{(

Î
(t)
)H

Π⊥
µ(η(t+1))x

}
N − Re

{(
Î
(t)
)H

Πµ(η(t+1))Î
(t)
} , (17)

(
σ2
)(t+1)

=
1

N

∥∥∥x− ρ(t+1)ejφ
(t+1)

µ(η(t+1))−A(t+1)Î
(t)
∥∥∥2

+
(
A(t+1)

)2(
1− 1

N

N2∑
k=N1

(
w

(t)
k

)2)
. (18)

1ΠA defines the orthogonal projector onto the column space of A, and its
complement is Π⊥

A = I−ΠA.
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IV. RIEMANNIAN OPTIMIZATION FOR THE E-STEP

Each Ĩk lives on a continuous space given by the complex
circle denoted as S = {x ∈ C : |x| = 1}. The complex
circle, S, is a smooth Riemannian sub-manifold of C. The set
of N interferences is the Cartesian product of N complex
circles, i.e., S × S × · · · × S (N times). This product of
smooth Riemannian manifolds is itself a smooth Riemannian
submanifold of CN , known as the complex circle manifold as
described in [14]. The product is formally defined as

M =
{
Ĩ ∈ CN :

∣∣∣Ĩk∣∣∣ = 1
}
. (19)

A. Background on Riemannian optimization
Manifold optimization is primarily used to mitigate the

computational complexity of non-convex constrained opti-
mization problems. By leveraging the geometric properties of
the constraints, this transforms the original problem into an un-
constrained one. This approach follows the same fundamental
steps as classical Euclidean optimization: i) the process begins
with an initial point on the manifold, ii) the descent direction is
computed at the tangent space of the current point, and iii) the
resulting point is then mapped back onto the manifold using
an operation known as retraction [14], [16]. More precisely,
to optimize an objective function f , and starting from a point
Ĩ
(t)
ℓ ∈M, where ℓ is the ℓ-th iteration of the gradient descent

algorithm, the gradient ∇f(Ĩ(t)
ℓ ) is computed as,

∇f
(
Ĩ
(t)
ℓ

)
=
[
· · · , ∂f

∂Ĩk
, · · ·

]∣∣∣
Ĩ=Ĩ

(t)
ℓ

. (20)

But this direction does not necessarily result in an update that
remains on M, and one resorts to the tangent space of M
at Ĩ

(t)
ℓ , T

Ĩ
(t)
ℓ

M. The orthogonal projector onto this tangent
space is used to project the gradient, yielding the so-called
Riemannian gradient, ∇Mf

(
Ĩ
(t)
ℓ

)
, illustrated in Fig. 1.

+ v
∇f(Ĩ

(t)
ℓ )

∇Mf
(
Ĩ
(t)
ℓ

)
T
Ĩ
(t)
ℓ

M

+RM,Ĩ
(t)
ℓ

(v)

+

Fig. 1: Illustration of the tangent space of the manifold.

Once the Riemannian gradient is obtained, a direction of
descent must be computed to update the algorithm. Follow-
ing [14], we adopt the Polak-Ribière [17, Chap. 8.3] conjugate
gradient algorithm, which defines the descent direction as,

dℓ = −∇Mf
(
Ĩ
(t)
ℓ

)
+ βℓTĨ(t)

ℓ−1→Ĩ
(t)
ℓ

(d(ℓ−1)), (21)

where T
Ĩ
(t)
ℓ−1→Ĩ

(t)
ℓ

(d(ℓ−1)) is referred to as vector transport,
and corresponds to the orthogonal projection of the previ-
ous descent direction d(ℓ−1) onto the current tangent space

T
Ĩ
(t)
ℓ

M. Since d(ℓ−1) was originally computed in the previous
tangent space T

Ĩ
(t)
ℓ−1

M, this projection ensures consistency in
the optimization process. The term βℓ is the Polak-Ribière
conjugate parameter, given by,

βℓ = ∇f
(
Ĩ
(t)
ℓ

)H (∇f (Ĩ(t)
ℓ

)
− T

Ĩ
(t)
ℓ−1→Ĩ

(t)
ℓ

(
∇f

(
Ĩ
(t)
ℓ−1

)))
∥∥∥∇f (Ĩ(t)

ℓ−1

)∥∥∥2 .

(22)
With the descent direction selected, the next step is to define
the step size τℓ. Following [14], we adopt the Armijo back-
tracking line search algorithm [17, Chap. 4.2]. This method
seeks a step that ensures a sufficient decrease in the objective
function, as dictated by the Armijo condition. The process
begins by testing an initial step size; if it satisfies the condition,
it is accepted, otherwise it is progressively reduced until the
criterion is met. Finally, an additional step, known as the
retraction and denoted RM,Ĩ

(t)
ℓ

, is required to map the update
back onto the manifold M from the tangent space T

Ĩ
(t)
ℓ

M.
This is illustrated in Fig. 1, leading to the update

Ĩ
(t)
ℓ+1 = RM,Ĩ

(t)
ℓ

(τℓdℓ) . (23)

B. Proposed approach

We propose to replace the E-step (10) with a Riemannian
optimization of the interference phases. To do so, we use the
current estimates of the signal parameters ε(t), leading to,

x = α(t)µ
(
η(t)

)
+A(t)Ĩ

(t)
ℓ + n. (24)

Defining y(t) = x − α(t)µ
(
η(t)

)
, we propose to replace the

E-step with the following minimization

argmin
Ĩ
(t)
ℓ ∈M

f
(
Ĩ
(t)
ℓ

)
. (25)

where the cost function is

f
(
Ĩ
(t)
ℓ

)
=
(
y(t) −A(t)Ĩ

(t)
ℓ

)H (
y(t) −A(t)Ĩ

(t)
ℓ

)
. (26)

Note that (25) has a unique solution since the cost function
f in (26) is strongly convex [18, Corollary 1.5, Chap. 6]
(the strong convexity can be shown with [18, Theorem 1.2,
Chap. 6]). Therefore we are guaranteed to converge to the
global minimizer, regardless of the initialization. Starting from
a value Ĩ

(t)
0 , the gradient of the objective function is

∇f
(
Ĩ
(t)
ℓ

)
= −2A(t)

(
y(t) −A(t)Ĩ

(t)
ℓ

)
. (27)

For the manifold (19), the tangent space at Ĩ
(t)
ℓ can be

expressed as [14]

T
Ĩ
(t)
ℓ

M =
{
v ∈ CN ,Re

{
v ⊙

(
Ĩ
(t)
ℓ

)∗}
⊙ Ĩ

(t)
ℓ = 0N

}
,

(28)
where ⊙ is the Hadamard (element-wise) product and 0N is
the 0 vector of CN , leading the orthogonal projector

ΠT
Ĩ
(t)
ℓ

M(v) = v − Re
{
v ⊙

(
Ĩ
(t)
ℓ

)∗}
⊙ Ĩ

(t)
ℓ . (29)
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The Riemannian gradient is obtained by applying (29) to (27)

∇Mf
(
Ĩ
(t)
ℓ

)
≜ ∇f

(
Ĩ
(t)
ℓ

)
− Re

{
∇f

(
Ĩ
(t)
ℓ

)
⊙
(
Ĩ
(t)
ℓ

)∗}
⊙ Ĩ

(t)
ℓ

= −2A(t)ΠT
Ĩ
(t)
ℓ

M(y(t)). (30)

The vector transport is

T
Ĩ
(t−1)
ℓ →Ĩ

(t)
ℓ

(
d(ℓ−1)

)
= ΠT

Ĩ
(t)
ℓ

M(d(ℓ−1)), (31)

and the Polak-Ribière conjugate parameter, using (22) and
defining g

(t)
ℓ =

(
y(t) −A(t)Ĩ

(t)
ℓ

)
, is

βℓ =
f
(
Ĩ
(t)
ℓ

)
−
(
g
(t)
ℓ

)H
ΠT

Ĩ
(t)
ℓ

M
(
g
(t)
ℓ−1

)
f
(
Ĩ
(t)
ℓ−1

) . (32)

Then, the descent direction yields to (refers to (21))

dℓ = ΠT
Ĩ
(t)
ℓ

M(2A(t)y(t)) + βℓΠT
Ĩ
(t)
ℓ

M(d(ℓ−1)). (33)

Finally, the retraction is expressed as [14]

RM,Ĩ
(t)
ℓ

(v) =
Ĩ
(t)
ℓ + v∥∥∥Ĩ(t)
ℓ + v

∥∥∥ , (34)

which leads to the update

Ĩ
(t)
ℓ+1 =

Ĩ
(t)
ℓ + τℓdℓ∥∥∥Ĩ(t)
ℓ + τℓdℓ

∥∥∥ . (35)

All these steps are summarized in Alg. 1.

Algorithm 1 Riemannian Conjugate Gradient Algorithm

1: Initialize Ĩ
(t)
0 to a random point on the manifold M;

2: Set d0 = −∇Mf(Ĩ
(t)
0 );

3: ℓ = 0
4: while || − ∇Mf(Ĩ

(t)
ℓ ) > 10−3|| do

5: ℓ← ℓ+ 1
6: Compute βℓ using (32);
7: Compute dℓ using (33);
8: Compute τℓ using [17, Def. 4.2.2];
9: Update Ĩℓ+1 using (35)

10: end while

V. EXPERIMENTAL RESULTS

We consider the scenario in which a GPS L1 C/A signal
[19] is attacked by a jammer generating a linear frequency
modulated signal, which is defined as:

I(t) = ΠT (t)× ejπαct
2+jϕ, ΠT (t) =

{
A for 0 ≤ t < T

0 otherwise
(36)

with αc the chirp rate, A the amplitude and T = NTs

the waveform period. The instantaneous frequency is f(t) =
1
2π

d
dt (παct

2) = αct, and therefore the waveform bandwidth

is Bc = αcT . We consider the case where, after the Hilbert
filter, the chirp is located at the baseband frequency, i.e., the
central chirp frequency is set to 0. Then, the chirp equation is

I(t) = ΠT (t)× ejπαc(t−T/2)2+jϕ. (37)

A. Estimation results
The root mean square error (RMSE) of the time-delay

parameter τ is illustrated in Fig. 2 with respect to the signal-to-
noise ratio at the output of the matched filter (SNROUT ), and
considering the following setup: a GNSS receiver with Fs = 4
MHz, and a chirp bandwidth Bc = 2 MHz, with initial phase
ϕ = 0, amplitude A = 40 and integration time T = 1 ms. All
results are averaged over 1000 Monte Carlo runs. In the results,
we show: a)

√
CRB, as detailed in [20], which characterizes

the asymptotic estimation accuracy of the GNSS parameters in
the absence of interference; b)

√
MCRB + bias2, as described

in [15], which reflects the asymptotic estimation performance
in the presence of interference, and represents the asymptotic
RMSE of the misspecified MLE (MMLE) [15]; c) the RMSE
for the EM algorithm derived in [12]; and d) the RMSE for
the EM algorithm with the derivation of the E-step using the
Riemannian optimization from Sec. IV. Note that the manifold
optimization-based approach outperforms the classical EM
method, with the optimization algorithm converging approxi-
mately 2 dB earlier. Furthermore, both algorithms are unbiased
and can effectively mitigate the interference effects, as the
MSE asymptotically approaches the CRB. As a final remark,
it should be noted that the initialization of both algorithms
uses the MMLE result, as proposed in [12].

For completeness, the Doppler RMSE is given in Fig. 3 with
respect to the SNROUT . We can see again the same effect as
for the delay estimation, i.e., convergence at a lower SNR.

B. On the execution time
Simulations were conducted on an Intel(R) Core(TM) i9-

10940X processor using MATLAB R2022a. The results are
based on the EM algorithm implementation from [12], with
optimization carried out using the ‘Manopt (7.1)’ toolbox [21].
The mean execution time for a single Monte Carlo run is
0.95s for the standard EM [12] and 0.75s for the manifold
optimization-based EM, i.e., the standard EM algorithm nearly
doubles the execution time. This is primarily due to the stan-
dard E-step that involves the use of modified Bessel functions.
Then, replacing this step with the Riemannian optimization
leads to a significant reduction in computational time.

VI. CONCLUSION

In this work, we introduced a novel EM algorithm in which
the E-step leverages Riemannian optimization. This approach
significantly improves the convergence in terms of MSE for
the time-delay estimation, as the algorithm converges 2 dB
earlier compared to the standard EM method. Additionally,
by avoiding the use of modified Bessel functions in the E-
step, this method substantially reduces execution time, en-
hancing computational efficiency. Through simulations, we
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Fig. 2: Time-delay RMSE for a GPS L1 C/A signal corrupted
by a linear chirp signal.
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Fig. 3: Doppler RMSE for a GPS L1 C/A signal corrupted by
a linear chirp signal.

demonstrated the effectiveness of the proposed algorithm in
estimating GNSS parameters in the presence of chirp inter-
ference jamming. These results highlight the potential of Rie-
mannian optimization for improving GNSS signal processing
in interference environments. Future work is to consider more
complex interference scenarios and real-world GNSS datasets.
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