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Abstract—This work provides a comparative study of the
complexity and performance for a range of different types of
robust estimators. The interest of this analysis is to find the
preferred robust estimator that can define the system time for
a swarm of satellites. The Student’s t-distribution is used as a
model for the noise corrupting the measurements. The ideal
performance of an unbiased estimator for a fixed number of
degrees of freedom is known in the form of the Cramér-Rao
Bound (CRB). In this article, two examples of a robust M-
estimator and an approximation of the Maximum Likelihood
Estimator (MLE) resulting from an Expectation-Maximization
algorithm are each tested with respect to the performance
bounds. Each estimator is also compared with the Gaussian MLE
under Gaussian noise, to identify any losses in efficiency under
Gaussian conditions. The complexity of the algorithms is also
studied by comparing the time until convergence in the iterative
update of the robust estimators.

Index Terms—Robust estimation, asymptotic performance,
computational complexity

I. INTRODUCTION

When dealing with parameter estimation from observations
contaminated with outliers, several choices can be made in
defining the estimators. These choices are important in many
practical applications, including timing in satellite constella-
tions, a case investigated in this work. For this application,
the presence of outliers can cause a reduction in the precision
of positioning solutions, which should be avoided. Robust
estimators effectively provide a robust system time for the
constellation that does not propagate these outliers. This work
aims to express the trade-offs between different types of robust
estimators in theoretical cases. In practice, readers can then
make informed decisions about the most suitable method when
estimating the parameters of any contaminated signal model,
with a specific use case explored for robust system time.

The heavy tails of a Student’s t-distribution assign a higher
likelihood to outliers compared to standard normal situations
without outliers [1], [2]. Modeling clock anomalies with
this distribution in [3] has demonstrated a robust method of
defining a time scale. This is relevant in the application of
collaborative satellite observations, where the onboard clocks
often face rapid fluctuations in their timing measurements
caused by environmental factors [4], [S]. Whether combining
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observations made in a swarm of satellites for scientific rea-
sons or for providing navigation solutions, significant changes
in the satellite times can produce errors in the correlation
of inter-satellite data [6], [7]. Recent studies [8], [9] on
space-based interferometry for radio-astronomy have identified
challenges in both localization and timing, which are critical
for accurate interferometric image reconstruction. The solution
requires the generation of a common ensemble time scale
or ‘system time’ using only onboard timing data, since the
satellites could potentially be operating autonomously and
remotely. The use of robust estimators to define the system
time is still a novel area of study, so the potential options of
robust estimators are interesting for this application.

The Student’s t-distribution has an asymptotic limit for the
estimation error that depends on the number of degrees of
freedom. The derived CRB for this distribution [10] establishes
a benchmark for the best-case estimation performance. In
recent works, the baseline of non-robust estimators has also
been characterized using the Misspecified CRB (MCRB) [11],
[12], providing insights into the effects of model mismatches
on estimation accuracy. In the case that the signal noise is
assumed to be Gaussian, while the noise is truly Student’s t-
distributed, the resulting Gaussian Misspecified MLE (MMLE)
has been proven [13] to be asymptotically unbiased and its
performance limited by the MCRB derived in [14]. Further-
more, this MCRB equals the Gaussian CRB for the same
parameters, which exceeds the CRBs of well-specified models
with real symmetric heavy-tailed distributions. It has also
recently been shown that knowledge of the true distribution
is not required to find estimators that improve upon the
MMLE because the semiparametric CRB for the parameters
of elliptically symmetric distributions equals the CRB of
the parameters of the true distribution [15]. This suggests
that a semiparametric robust estimator could perform as well
as one based on the exact noise model. While identifying
such an estimator is beyond this paper’s scope, we argue
that a class of estimators may enhance MMLE performance
without requiring knowledge of the noise distribution. Here,
we explore some of these estimators: i) the approximate MLE
of the parameters of the Student’s t-distribution determined by
the Expectation-Maximization (EM) algorithm [16], [17], ii)
an M-estimator tuned specifically for use with a Student’s t-
distribution [1], and iii) a more general M-estimator that just
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aims at eliminating extreme values. The performance metrics
used to compare the estimators are the efficiency in nominal
operations, Mean Square Error (MSE) in the presence of
outliers, and computational complexity. Section II introduces
the robust estimators and their implementation. Section III
discusses their use in defining a time scale, and Section IV
evaluates their performance under nominal and Student’s t
noise conditions, before concluding with a preferred estimator
and future directions.

II. ROBUST ESTIMATORS

As each estimator to be analyzed uses some form of iterative
procedure, the initialization is kept constant for each estimator.
To ensure that the estimator is initialized with a consistent
estimate, the Gaussian MLE is used to initialize the estimate
of the location and scale parameters. The Gaussian MLE
initializing the iterative algorithms is defined by:
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where z1,---,2zy are NN independent and identically dis-
tributed random variables.

A. EM-Student’s t-distribution

In theory, the MLE derived based on the probability dis-
tribution function (PDF) of the Student’s t-distribution should
provide an asymptotically efficient and optimal estimate. The
PDF of the Student’s t-distribution is:

Lu_gl) 1/ 2\ — (%)
)

Due to the form of the PDF, the MLE does not have a closed-
form when the number of degrees of freedom is unknown. In
the case of anomalous measurements, the shape parameter is
not necessarily known. Hence, the estimation of the location
parameter requires joint estimation of the scale matrix and the
number of degrees of freedom. To converge to the MLE, an
EM algorithm developed in [17] has been implemented for
generation of a robust time scale in [3]. The EM iteratively
estimates the latent variables u; and w; in Algorithm 1
that allow estimation of the parameters of the Student’s t-
distribution. Equation (3) is solved using another iterative
Newton’s method to converge to a solution for the estimated
number of degrees of freedom 7. This estimation of the
shape parameter of the underlying distribution is useful in
remaining efficient in the nominal case, but at the expense
of higher computational cost. For the EM algorithm above,
an additional initialization is necessary, i.e., vy = 100 for the
number of degrees of freedom. By initializing the number of
degrees of freedom close to the value for Gaussian noise, the
convergence speed of the EM algorithm in nominal conditions
is improved. However, the initialization of the number of
degrees of freedom must not be too large, otherwise the EM
algorithm risks converging to the Gaussian MLE and not being

Algorithm 1 EM for Student’s t-distribution
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robust. Alternatively, the number of degrees of freedom can
be initialized at a low value vy = 2.01 (without entering
the domain with undefined variance v < 2) to improve the
convergence speed in the presence of outliers and guarantee
robustness. The stopping rule ¢ < le — 5 for each iterative
procedure is kept constant, focusing only on the estimate of
the location parameter because that is the goal when generating
a common time scale.

B. M-estimators

The classical least squares estimator minimizes the sum of
the squared residuals and is optimal in the nominal case of
Gaussian noise.

N N
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A robust M-estimator can be implemented by using an Itera-
tively Reweighted Least Squares (IRLS) procedure. The IRLS
minimizes a different loss function p(z; — p) that reduces the
impact of outlying values

N
fiyg = arg mgan(zi — ). (5)
i=1
The sample median is a robust estimate of the location that
is defined by the loss function p(z) = |z| [1]. Other known
loss functions provide a decreasing weight for outliers, with
the Huber function and Tukey’s bisquare function being the
most commonly implemented [1]. The bisquare loss function
is defined as follows:

o\ 3
1—(1—(%) ) , for |z| < b,
1, for |x| > b,

po(x) = (6)

where the threshold b is chosen to fix a certain level of
performance in the nominal case. The value b = 4.685
provides 95% efficiency in the nominal case and is used in
this work as a benchmark robust estimator [1]. The above loss
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function results in the following definition of weights, which
are calculated using the derivative of the loss function [1]

/ T 2 2
d@)fe=(1-)) . forll<b
p"(0) =0, for |x| > b.

Multiplicative constants that do not affect the minimization
of (5) are neglected in the weighting function. The bisquare
loss function provides a redescending M-estimator because
the derivative of the loss function (otherwise referred to as
the influence function) tends to zero at infinity. This results
in increased robustness to large outliers. A redescending
influence function is also defined in [1] for the Student’s t-
distribution with shape parameter v, which is usually unknown
, x

wu(x) - pl/('r) - (E2 + V. (8)
The IRLS algorithm that solves (5) with the above loss
function requires the computation of the weighting function

W (x) =
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Similarly to the M-estimators based on the bisquare loss
function, the number of degrees of freedom v is fixed to a
value that provides robustness to outliers but does not lose too
much efficiency under nominal noise conditions. For a loss in
performance of no greater than 5% when the noise is Gaussian,
the number of degrees of freedom can be fixed to v = 12
(empirically found). This is different from the EM algorithm
in Section II-A that actively updates the number of degrees of
freedom to be efficient in both nominal and anomalous cases.

The resulting IRLS algorithm is summarized below

Algorithm 2 IRLS for M-estimator
v=12
while ¢ > 1le — 5 do
k=k+1
62 = MAD(z — fix_1)
wj,k =W (%7&7/):_1
N
fie = SR
€= [ — Hk—1
end while

where MAD(z — [i;—1) is the Median Absolute Deviation
for samples z = [z1,---,zn] at the current snapshot, pro-
viding a robust estimate of the scale parameter. To simplify,
the two different M-estimators will be referred to as the
M,-estimator and M, -estimator for the bisquare weighting
function and the Student weighting function, respectively.

III. TIME SCALE ESTIMATION

A time scale is constructed with a weighted average of clock
prediction errors to act as a common reference or system time
for a distributed network of clocks. The clock data is only
observable by satellite ¢ measuring time differences with all
other satellites j # 4, obtaining x; ; (t) = x;(t)—x; (t)+n ; ()

with measurement noise n; ;(t) for each inter-satellite link.
The prediction errors are observed by comparing these mea-
surements with the predicted values using information from a
previous epoch & (t|t—7). Outliers in the clock data arise from
two different sources: i) the onboard clocks change values due
to environmental changes such as radiation or temperature and
ii) the exchange of clock timing information is corrupted by
noise on the inter-satellite communication links. As a result,
either the onboard time deviates from the predicted value or
the clock measurements provide incorrect information about
the true time. The advantage of modeling the prediction errors
with the Student’s t-distribution is that both these sources
of outliers are addressed simultaneously [3]. In addition, the
time offset of satellite ¢ with respect to the designed system
time x; p(t) is a parameter of the Student’s t-distribution that
models the measurements and prediction errors:

@i (t) = &;(tlt = 7) ~ T(xs B (1), 0°(2), v (1))

The same model can be assumed for each of the N satellites
in the swarm by changing the reference satellite ¢ for the clock
measurements. The location parameter then corresponds to the
time offset from the system time for the reference satellite.
The above model is equivalent to a series of observations z;
following a Student’s t-distribution where p = x; g(t) is the
location parameter and allows access to the system time. Omit-
ting the dependence of time to represent a single snapshot, the
observations of clock prediction error are z; ~ T'(u, 02, v).
Each robust estimator provides an estimate fi, which should
mitigate the impact of outliers in the noise model. In practice,
the robust estimators provide a time scale that is not impacted
by the independent sources of anomalies, allowing a reliable
correlation of collaborative images or localization information.
The MSE for the robust estimators should be better than the
limit described by the MCRB. The reliability of the time scale
is linked to the error of the estimate of the mean, a larger
MSE would indicate that the prediction errors and link noises
with outliers are contributing more to the time scale than the
optimal case of only using nominal timing information.

(10)

IV. ESTIMATOR ANALYSIS

For reproducibility of the results, the noise is generated with
Student-t and Gaussian distributions, both with zero-mean and
scale parameter o2 = 1. The number of degrees of freedom for
the Student-t distribution is set to v = 3. The initial analysis
evaluates the efficiency of robust estimators in the absence of
outliers. Fig. 1 presents the Asymptotic Relative Efficiency
(ARE), calculated empirically as the ratio of the MSE of the
Gaussian MLE to the MSE of the robust estimators under
nominal conditions, ARE = MSE;, / MSE;. For brevity,
the MLE for the parameters of the Student’s t-distribution
approximated by the EM algorithm is referred to as the EM
estimator throughout the rest of this article. It is capable
of adapting the appropriate parameter estimates, achieving
near 100% ARE when the number of degrees of freedom is
appropriately initialized. In contrast, the M, -estimator shows
a tradeoff: lower efficiency with fewer degrees of freedom
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Fig. 1. Asymptotic Relative Efficiency (ARE) for the investigated robust

estimators in the absence of anomalies. The closer the ARE to 1, the better
the associated estimator performs under nominal conditions.

but improved ARE as v increases, at the cost of reduced
robustness. Proper tuning of v can control efficiency loss. Note
that same tradeoff applies to the Mj-estimator since the EM
estimator is autonomously efficient. Note that this estimator
is preferred for remote space operations where manual tuning
can be impractical. However, other factors must be considered
before making the final choice of estimator.

To assess the asymptotic performance of the proposed
estimators with contaminated data, Fig. 2 shows the MSE for
the location estimate as a function of the number of clocks.
The number of Monte Carlo runs is set to 2000. Moreover, we
show the theoretical performance corresponding to the CRB
of the Student’s t-distribution (red squares) and the MCRB
(light-blue squares). Fig. 2 confirms that the MSE of the
location for the EM estimator (orange circles) asymptotically
approaches the CRB (red squares). The M, -estimator with the
correct degrees of freedom v = 3 (green triangles) effectively
mitigates outliers and converges to the CRB. However, as
shown in Fig. 1 the M-estimator with correctly specified
numbers of degrees of freedom does not remain efficient under
nominal conditions. In contrast, the EM estimator dynamically
estimates the number of degrees of freedom, maintaining both
efficiency in the nominal case and robustness to outliers.

Fig. 2 also shows that the MSE of the Gaussian MLE (blue
crosses) converges to the MCRB. The other robust estimators
are not optimal but still outperform the Gaussian MLE. Setting
the number of degrees of freedom to v = 12 offers a
reasonable balance, providing an acceptable level of efficiency
in the nominal case (see Fig. 1) while maintaining similar
performance as the EM estimator initialized with vy = 100.
The My-estimator achieves slightly better performance in the
robust case (yellow diamonds compared to black triangles and
orange circles in Fig. 2). This confirms that it is not necessary
to assume the exact noise model to obtain a robust estimator.
However, the ARE remains worse than the appropriately tuned
M, -estimator so is less preferable. The case of fixing the num-
ber of degrees of freedom to a high value for better nominal
performance shows significant losses (purple triangles) for the
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Fig. 2. Asymptotic Mean Square Error (MSE) for the different robust
estimators in the presence of anomalies compared to the performance limits.

M, -estimator compared to other robust methods.

The EM-based estimator is robust to the anomalies while
maintaining nominal performance and achieves nearly optimal
performance when the number of degrees of freedom is
properly initialized. Thus, for a balance of nominal efficiency
and robustness, the EM algorithm performs best, but only
marginally. Nevertheless, using an EM algorithm comes with
a cost in computational complexity before converging to the
best estimate.

Fig. 3 shows the average time before convergence for each
of the iterative algorithms when the noise is Student’s t
distributed. The simulations were conducted on an Intel(R)
Core(TM) 19-10980XE CPU, using MATLAB R2022a. The
M, -estimator takes the least amount of time because the
difficult-to-estimate shape parameter is fixed. Fig. 3 shows that
the Mj-estimator achieves a similar convergence time to the
case with the exact number of degrees of freedom. However,
this estimator is still slower than the M, -estimator with the
tuned number of degrees of freedom while obtaining the same
MSE performance. Fig. 3 also demonstrates the difference in
initializing the shape parameter at either a small or high value
for the EM estimator. There is an improvement when the initial
number of degrees of freedom is assumed to be low.

Fig. 4 shows a larger increase in computation time when
initializing at low values of the number of degrees of freedom
in nominal data. This justifies the choice of initializing the EM
with the Gaussian estimates to remain somewhat competitive
with the computation time of the M-estimators. Additionally,
Fig. 4 shows that both types of M-estimator converge faster
than the EM solution. This includes the Mj-estimator that
does not specify the exact noise distribution but remains robust
and fast. Nevertheless, the M, -estimator can provide further
improvement in computation time while remaining robust and
having a better ARE than the Mj-estimator.

The computation time for each estimator can have different
values depending on the level of precision chosen in the
stopping rule. It is assumed that for the same defined level
of precision in each of the algorithms, the relative perfor-
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Fig. 4. Average time spent in the iterative loop for each of the robust
estimators (Gaussian noise).

mance should have a similar magnitude. The figures presented
above highlight the advantages and trade-offs for each of
the investigated estimators. The M, -estimator provides the
fastest convergence but requires a specific tuning to achieve
the desired ARE. The EM estimator reliably and automatically
obtains good ARE as well as good robustness to outliers at
the cost of increased computation time.

V. CONCLUSION

A weighted average helps define a robust time scale in a
swarm of satellites. The method of computing the weights
depends on the type of robust estimation that is chosen.
Hence, several robust estimators have been analyzed to help
choose one that remains robust and efficient while not being
computationally expensive. Small-scale satellites operating au-
tonomously in distant orbits might have limited computational
capacities. An appropriately tuned M, -estimator based on the
loss function for a Student’s t-distribution is shown to provide
a low-cost and robust solution. Nevertheless, the more com-
putationally expensive EM algorithms are more autonomous,
being able to adapt to nominal conditions with improved
efficiency compared to the M, -estimator. Using the more

commonly implemented Mj-estimator based on the bisquare
loss function was also shown to provide a good balance of
speed and robust estimation performance, although not as good
as the tuned M, -estimator. Since the EM estimator is both
robust and efficient in the nominal case, it is recommended for
use in applications that have sufficient computation budgets.
Otherwise, the tuned M, -estimator is preferred for computa-
tionally limited applications with a permitted maximum loss
in nominal efficiency. The performance of the My-estimator
shows that robust estimators do not necessarily rely on the
true definition of the underlying distribution of the anomalous
measurements. Future work can investigate other types of
robust EM estimators with improved speed, or other fast and
robust estimators that do not consider the exact noise model.
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